
Protein Bioinformatics

Building Useful Relationships
Between Multiple Protein
Sequences and Structures

MSRKGPRAEVCADCSA
PDPGWASISRGVLVCDE
CCSVHRLGRHISIVKHLR
HSAWPPTLLQMVHTLA
SNGANSIWEHSLLDPA
QVQSGRRKAN

Robert Latek, Ph.D.


Bioinformatics Scientist, Biocomputing

Overview

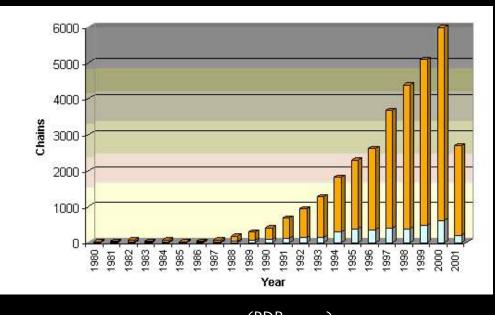
- Introduction
- Sequence Comparisons
 - Pairwise Letter by Letter vs. Word by Word
 - Multiple Sequence Alignments (MSA)
- Sequence Domains
 - Phylogenetic Trees and Multiple Sequence Alignments
 - Blocks, Patterns, and Profiles (Motifs)
- Structural Comparisons
 - Analyzing Protein Structures
 - Structure Prediction

Translated Transition

- DNA Bioinformatics
 - Sequence Comparison, Gene & Promoter ID

- Protein Bioinformatics
 - -Sequence, Function, Structure ID & Comparison

Bioinformatics Databases


Sequence Database Growth

Sequences / NT ()

A Decade of Growth for GenBank and NCBI RefSeq Microbial 3000 Genomes PHI-BLAST Base Pairs of DNA 2500 PubMed PSI-BLAST Gapped BLAST COG 2000 VAST Congressional GeneMap 1500 legislation OMIM establishing NCBI BankIt Sequin was signed on 1000 GenBank at NCBI 500 dbEST 1996 1997 1998

Protein Structure Database Expansion

Sequences / AA (

(Cooper NCBI) (PDB

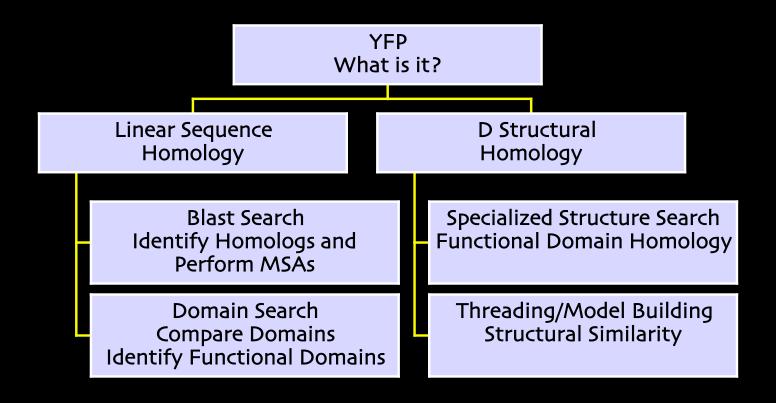
Bioinformatics Resources

Analyze a query sequence using the Pfam HMM d

The Protein Domain Natal swissorok

SWISS-PROT
Protein knowledgebase
TrEMBL

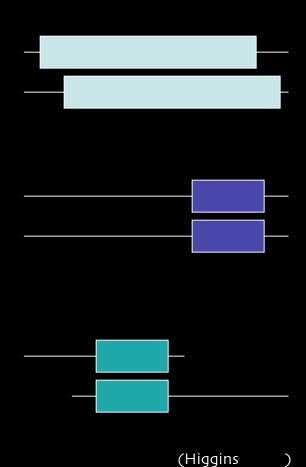
SS-PROT


ProDor

Pôle Bio-Informatique Lyonnais

Network Protein Sequence @nalysis
NPS@ is the IBCP contribution to PBIL in Lyon, France

Bioinformatics Approaches



Overview

- Introduction
- Sequence Comparisons
 - Letter by Letter vs. Word by Word
 - Global Multiple Sequence Comparisons
- Local Sequence Domains
- Structural Domains

Protein Modules

- Proteins are derived from a limited number of basic building blocks (Domains)
- Evolution has shuffled these modules giving rise to a diverse repertoire of protein sequences
- As a result, proteins can share a global or local relationship

Residue by Residue Comparisons

```
A: V R W A H S G C T R T

B: V R G A H K D R T

GUUAGAUGGGCUCAUAGUGGCUGCACUCGGACC
GUUAGAGGUGCUCATAAAGAUCGGACC
```

- VRWAHSGCTRT

 VRGAH--KDRT

 GUU AGA UGG GCU CAU AGU GGC UGC ACU CGG ACC
 GUU AGA GGU GCU CAU

 AAA GAU CGG ACC
- II. V R W A H S G C T R T V R G A H K D R T
- III. V R W A H S G C T R T V R G A H K D R T

Word by Word Comparisons

Query: GTQITVEDLFYNIATRRKALKN

GTQ
Word Size = 3
TQI

2 or 3 for protein (3 default)

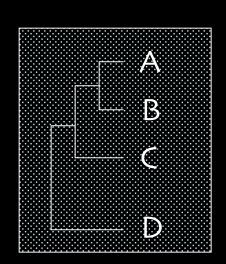
> 7 for blastn searches (11 default)
Neighborhood Words

Make table for both query and database

ITV -> LTV,MTV,ISV,LSV,MSV

TVE IAV,LAV,MAV,ITL,etc.

VED

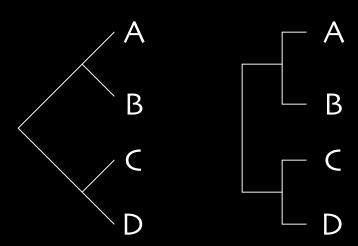

(Cooper NCBI)

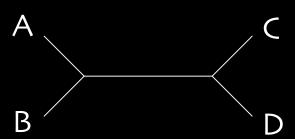
EDL

DLF

Multiple Sequence Comparisons

- Phylogenetic Trees
 - Graphs representing the evolutionary history of a gene
 - Relationship of one sequence to other sequences
 - Dissect the appearance order of insertions, deletions, and mutations
- Multiple Sequence Alignments
 - Place residues in columns that are derived from a common ancestral residue


```
A:V W A H S C R
B:V G A H - K R
C:V G A H S K R
D:V G A H - C R
```

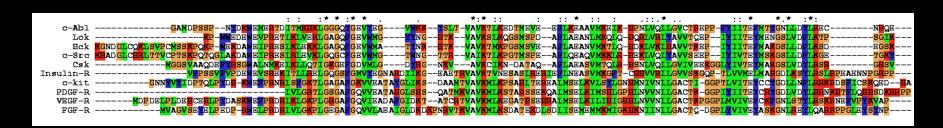

Phylogenetic Trees

Rooted

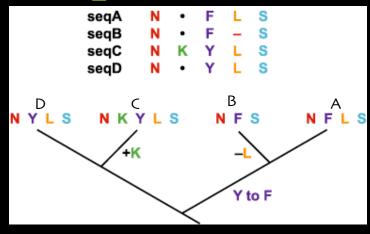
Unrooted

Branches intersect at Nodes

Predict function, observe epidemiology, analyzing changes in viral strains


Tree Building

Building and Drawing Trees


http://bioweb.pasteur.fr/seqanal/phylogeny/phylip-uk.html

Multiple Sequence Alignments

- Global
 - Search for alignments, matching over entire sequences
- Local
 - Examine regions of sequence for conserved segments
- Matches, Mismatches, Gaps

Multiple Sequence Comparisons

- MSCs Can Reveal Sequence Patterns
 - Demonstration of homology between >2 sequences
 - Identification of functionally important sites & structure prediction
- ClustalX
 - Web-based http://pir.georgetown.edu/pirwww/search/multaln.html
 - Stand-alone
- MSAs Are Related To Trees

Overview

- Introduction
- Sequence Comparisons
- Local Sequence Domains
- Structural Domains

Local Alignments: Domains of Conserved Sequence

Blocks

- Represent a conserved region within a MSA that contains matches & mismatches but no gaps
- Serve as anchors to assist in aligning sequences

.:***:*:.*** **. ::

— Inttp://blocks.fhcrc.org/blocks/

Patterns

- Deterministications of possible receptores continuous continuous

PHLPADLFTSCLTTPIRTSLAFHLSHS

VEFPADVFTSCLTTPIKMALKWFCRRS

Profiles

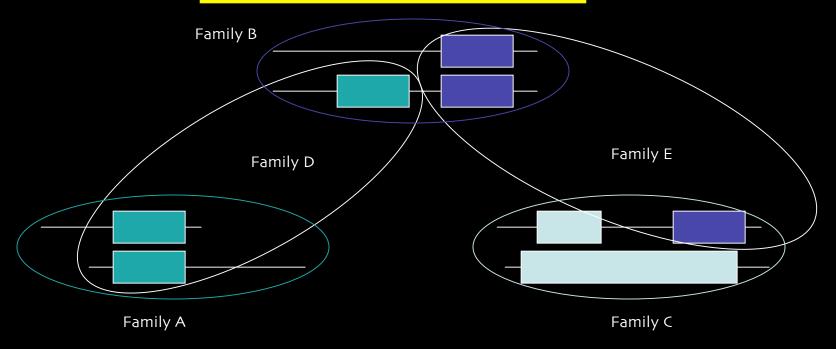
Mathematical probability that an aa will be located at a given position

Pattern Matching

- Find patterns like aa1 xx aa2 xxxx aa3
 - Definition of a non-contiguous motif

 $C \times (2,4) \times C \times (3) \times (3,5) \times (3,5)$

Define/Search A Motif http://us.expasy.org/tools/scanprosite/


Profile Searching

- PSSM Position Specific Scoring Matrix
 - -Columns of weights for every aa corresponding to each column of a MSA

http://www.ncbi.nlm.nih.gov/BLAST

С								1	. I	T	S									
O N	A	C	D	E	${f F}$	G	H	2	. T	D I	L S M	N	P	Q	R	S	T	V	W	Y
I	8	-2	5	4	5	5	-4	24 4	. V	15 :	и ^м с Г ¹ &	1	1	1	-7	2	22	21	-18	-6
									. v		· S									
T	13	-5	24	18	-18	19	7		.7 I	ゼ	-4 T	14	11	10	-1	9	<u>29</u>	3	-28	-14
									. Т		r s									
L	5	-5	3	4	13	4	2	8 8	4 ^I	<u>14</u>	L ₁₂ 5	8	-5	0	-10	0	10	10	-1	5
S	17	17	13	10	-12	29	-5	-5	6	-14	-9	12	10	0	-2	<u>34</u>	19	1	-8	-15

Protein Families

• Protein Family - a group of proteins that share a common function and/or structure, that are potentially derived from a common ancestor (set of homologous proteins)

Family Databases Resources

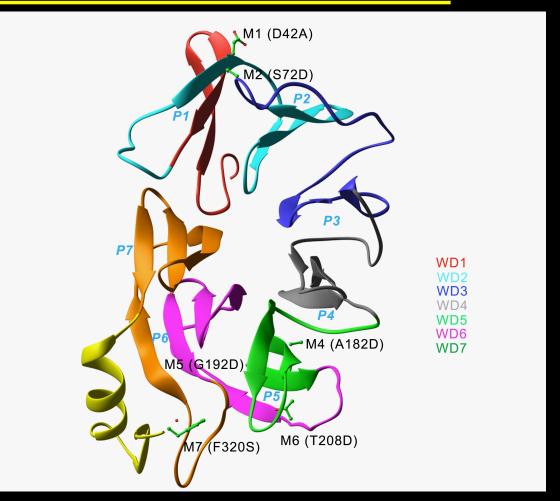
Curated Databases

- Proteins are placed into families with which they share a specific sequence pattern
- Pfam http://pfam.wustl.edu/hmmsearch.shtml/

Clustering Databases

- Sequence similarity-based without the prior knowledge of a specific patterns by searching a database against itself
- ProDom http://prodes.toulouse.inra.fr/prodom/doc/prodom.html

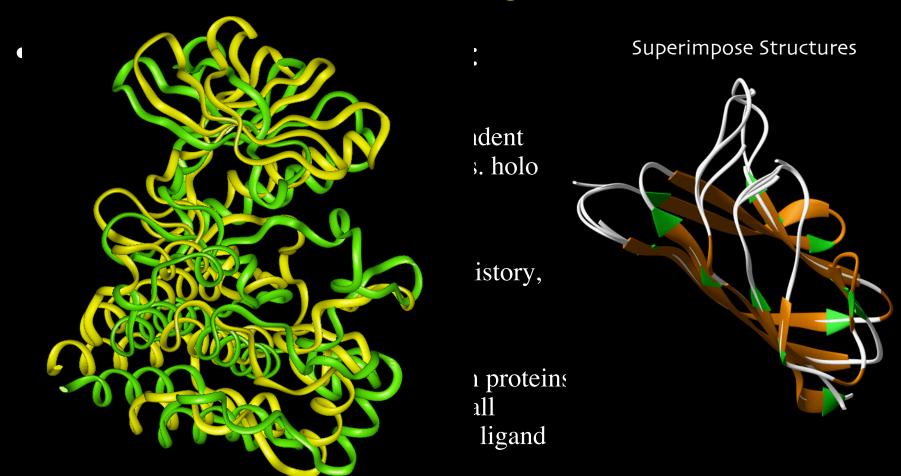
Derived Databases


- Pool other databases into one central resource
- Blocks Search and Make http://blocks.fhcrc.org/blocks/

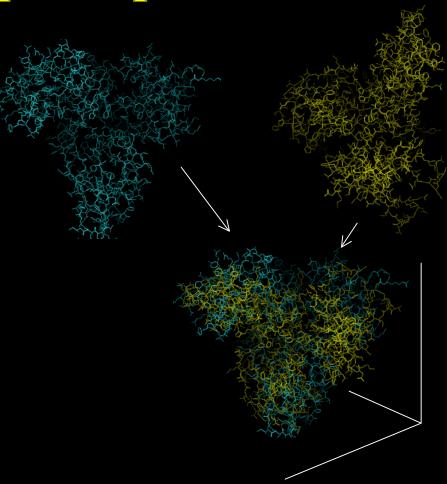
Overview

- Introduction
- Sequence Comparisons
- Local Sequence Domains
- Structural Domains
 - Structural Comparisons (Alignment, Substitution Modeling, Domain Identification, Residue Mapping)
 - Structure Prediction

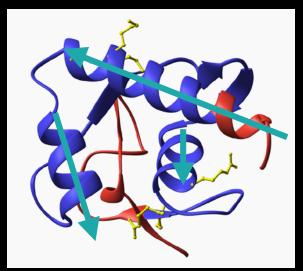
Protein Structure Classification

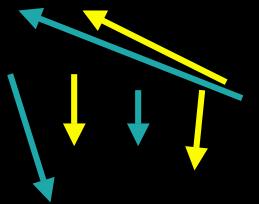

- Proteins can adopt only a limited number of possible 3D conformations
- Protein Structure Classes
- Completely different sequences can fold into similar shapes

Structure Family Databases


- SCOP: Structural Classification Of Proteins
 - Hierarchical levels to reflect evolutionary and structural relationships
 - http://scop.mrc-lmb.cam.ac.uk/scop
- CATH: Classification by Class, Architecture, Topology, and Homology
 - http://www.biochem.ucl.ac.uk/bsm/cath/
- FSSP: Fold classification based on Structure-Structure alignment of Proteins
 - DALI pair-wise alignments
 - http://www2.embl-ebi.ac.uk/dali/fssp/fssp.html
- SARF: Spatial Arrangement of Backbone Fragments
 - http://123d.ncifcrf.gov/

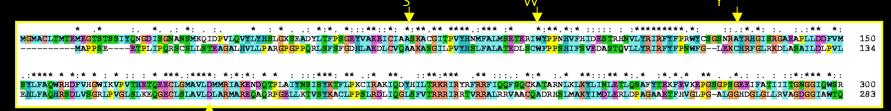
Structural Alignments



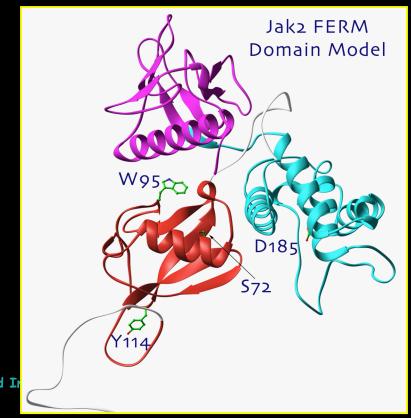

Structure Superimposition

- Sequence alignment based on LINEAR sequence similarity
- Structure alignment forms relationships in 3D space
 - similarity can be redundant for multiple sequences
- Alignment
 - Translate center of mass to a common origin
 - Rotate to find a suitable superposition
- Considerations
 - What to align and compare?

VAST and SARF


- Implement rapid methods to assign secondary structure
- VAST

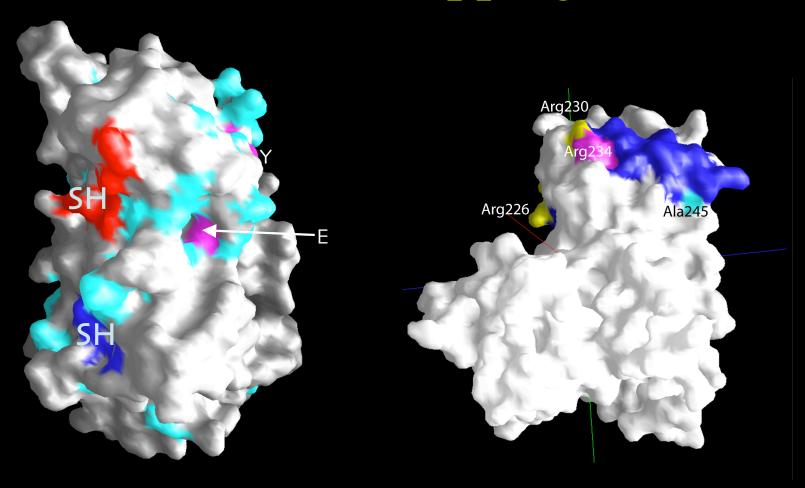
http://www.ncbi.nlm.nih.gov:80/Structure/VAST/vastsearch.html


• SARF

http://123d.ncifcrf.gov/

Substitution Modeling

- Mapping Variants
- Construct Design
- Ligand Associations



Jak

Jak

Jak

Surface Mapping

Structure Prediction

- Secondary Structure Prediction
- Specialized Structures
- Tertiary Structural Modeling

Secondary Structure Prediction

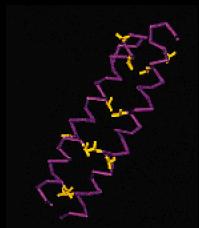
- Recognizing Potential Secondary Structure
 - 50% of a sequence is usually alpha helices and beta sheet structures
 - Helices: 3.6 residues/turn, N+4 bonding
 - Strands: extended conformation, interactions between strands, disrupted by beta bulges
 - Coils: A,G,S,T,P are predominant
 - Sequences with >45% sequence identity should have similar structures
- Databases of sequences and accompanying secondary structures

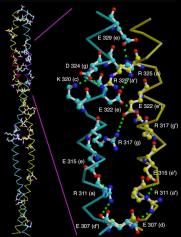
Secondary Structure Prediction Tools

- NNpredict 65 % effective*, outputs H,E,-
 - http://www.cmpharm.ucsf.edu/~nomi/nnpredict.html
- PredictProtein query sequence examined against SWISS-PROT to find homologous sequences
 - MSA of results given to PHD for prediction
 - 72% effective*
 - http://www.embl-heidelberg.de/predictprotein/submit_def.html
- Jpred integrates multiple structure prediction applications and returns a consensus, 73% effective*
 - http://jura.ebi.ac.uk:8888/

Specialized Structures

Leucine Zippers


 —
 — helices held together by interactions between L residues spaced at ever 7th position


Coiled Coils

- 2 or three a helices coiled around each other in a lefthanded supercoil
- Multicoil http://gaiberg.wi.mit.edu/cgi-bin/multicoil.pl

• Transmembrane Regions

- 20-30aa domains with strong hydrophobicity
- PHDhtm, PHDtopology, TMpred (TMbase)
- http://www.emblheidelberg.de/predictprotein/predictprotein.html

Tertiary Structural Modeling

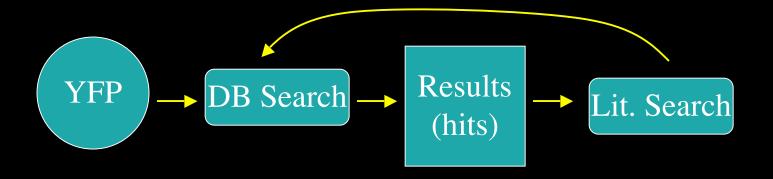
Goal

Build a model to use for comparison with other structures, identify important residues/interactions, determine function

Challenges

- Reveal interactions that occur between residues that are distant from each other in a linear sequence
- Slight changes in local structure can have large effects on global structure

Methods


- Sequence Homology use a homologous sequence as a template
- Threading search for structures that have similar fold configurations without any obvious sequence similarity

Structural Modeling Tools

- Perform Automated Model Constructions
 - -SWISS-MODEL
 - •Compare sequence to ExPdb to find a homolog
 - •Define your own templates (from threading)
 - •http://www.expasy.ch/swissmod/SWISS-MODEL.html
 - -GENO3D
 - •PSI-BLAST to identify homologs possessing structures to be used as templates
 - •http://geno3d-pbil.ibcp.fr
- Threading

123D http://123d.ncifcrf.gov/123D+.html

Post-Processing

- Literature Searches
- Do the Results Make Sense?
- Are the Results Consistent?
- Can the Results be Substantiated Biologically?

Questions?

Robert Latek latek@wi mit edu

PDF Slides Available At: http://staffa wi mit edu/bio/proteins pdf

References

Bioinformatics: Sequence and genome Analysis. David W. Mount. CSHL Press, 2001.

Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. Andreas D. Baxevanis and B.F. Francis Ouellete. Wiley Interscience, 2001.

Brooks, Charles L., Department of Molecular Biology. The Scripps Research Institute.

Burkhard P, Kammerer RA, Steinmetz MO, Bourenkov GP, Aebi U. The coiled-coil trigger site of the rod domain of cortexillin I unveils a distinct network of interhelical and intrahelical salt bridges. Structure Fold Des 2000 Mar 15;8(3):223-30 Oxford University Press, 2000.

Bing Hao, Weimin Gong, Tsuneo K. Ferguson, Carey M. James, Joseph A. Krzycki, and Michael K. Chan. A New UAG-Encoded Residue in the Structure of a Methanogen Methyltransferase. *Science* 2002 May 24; 296: 1462-1466.

Gayathri Srinivasan, Carey M. James, and Joseph A. Krzycki. Pyrrolysine Encoded by UAG in Archaea: Charging of a UAG-Decoding Specialized tRNA. *Science* 2002 May 24; 296: 1459-1462.