

# Statistics for Biologists 

## Lecture 3:

Selected biostatistical applications

George Bell, Ph.D.
Senior Bioinformatics Scientist
Bioinformatics and Research Computing
Whitehead Institute

## Example: Analyzing the intersection between two sets

- A knockout mouse model has certain genes that are downregulated.
- A mouse treated with a drug has certain genes that are downregulated.
- What is the intersection of these gene lists?
- Is this intersection greater than we'd expect by chance?
- Biological goal: to determine if the gene knocked out and the drug act through a similar mechanism.

WIBR Statistics for Biologists Course, © Whitehead Institute, Nov 2007

## Tests of independence: analyzing an intersection

- Input data as a contingency table

| 20 | 100 |
| :---: | :---: |
| 130 | 14,750 |

- Statistical tests:
- Fisher's exact test: best test for $2 \times 2$ matrix
- Chi-squared test: best test for larger matrices; approximate for $2 \times 2$ matrix
- Excel command: CHITEST
- but expected frequencies needed as input
- R commands:
\# Create a matrix of 2 rows (and 2 columns)
ko.vs.drug $=\operatorname{matrix}(\mathrm{c}(20,100,130,14750)$, nrow=2)
fisher.test(ko.vs.drug)
chisq.test(ko.vs.drug)


## Fisher's exact test output: Analyzing the intersection between two sets

> fisher.test(ko.vs.drug)
Fisher's Exact Test for Count Data


WIBR Statistics for Biologists Course, © Whitehead Institute, Nov 2007

## Survival analysis

- Given data about patient or animal mortality, can we calculate the probability of being alive at a given time?
- Given data for $>1$ different groups, does one live longer than the other?
- Lifetime data are generally censored: exact time of death is not known:
- left censoring: upper bound is known
- right censoring: lower bound is known

Survival analysis goal 1: sample data and $R$ commands

| mouse ID | days | dead <br> $0=$ no; $1=$ yes | group |
| :---: | :---: | :---: | :---: |
| A | 350 | 0 | Control |
| B | 450 | 0 | Control |
| C | 103 | 1 | KO |
| D | 305 | 0 | KO |

library(survival) \# load the R package
dat $=$ read.delim("my.data.txt", header=T)
\# Compute an estimate of a survival curve
\# Look at all data together
my.surv.all $=\operatorname{survfit}(\operatorname{Surv}($ days, dead $)$, data $=$ dat $)$
\# Does group influence survival? => ' $\sim$ ' means "described by" my.surv.by.group $=\operatorname{survfit}($ Surv $($ days, dead $) \sim$ group, data $=$ dat $)$

## The Chi-squared goodness of fit test to check for Mendelian ratios

- The most traditional biological use of the chisquared test
- Example: number of colors from a flower cross

| red | pink | white |
| :---: | :---: | :---: |
| 54 | 122 | 58 |

- Do these equal the expected ratio $1: 2: 1$ ?
- R commands:
flowers $=c(54,122,58)$
chisq.test(flowers, $\mathrm{p}=\mathrm{c}(0.25,0.5,0.25)$ )


## Survival analysis goal 1: estimate the survival function

- The survival function $S(t)$ : the probability of surviving more than $t$ units of time
- The Kaplan Meier estimate: reduce survival probability by $\frac{R_{t}-1}{R_{t}}$ if there is a death a time $t$ and a population of $R_{t}$ is still alive at that time
- Input data required for estimate:
- age animal was last observed
- if animal was alive or dead

WIBR Statistics for Biologists Course, © Whitehead Institute, Nov 2007

## Survival analysis goal 1: sample R output



Confidence interval(s) (95\%) can be shown

## Survival analysis goal 2: compare two curves

- Use the log-rank test to compare the survival function for each group at each time point using nonparametric statistics



## Regression and correlation

- Both create a model for the relationship between two (or more) variables
- regression: technique for describing a relationship in which the magnitude of one variable is a function of another variable - but not necessarily cause and effect ex: height $=f($ age $) \quad$ cell size $=f([$ glucose $])$
- Simple linear regression: tries to explain one variable with another variable with an equation of the form

$$
y=\beta x+\alpha+\varepsilon
$$

where

- $\varepsilon=$ error $=$ residual $\quad \alpha=y$-intercept
- $\beta=$ slope $=$ regression coefficient
- Does this make sense biologically? visually (from the plot)? Could data be transformed?

WIBR Statistics for Biologists Course, © Whitehead Institute, Nov 2007

## Visual example: linear regression

- How can we draw a "best fit line"?
- the method of least squares: minimize


$$
\begin{aligned}
& \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} \\
& \begin{array}{l}
\text { where } \\
y=\text { actual value of } y \\
\hat{y}=\text { predicted value of } y
\end{array} \\
& \begin{array}{l}
\text { So to get slope }(\beta) \text { and } \\
\text { intercept }(\alpha)
\end{array} \\
& \beta=\frac{\mathrm{n} \sum \mathrm{\sum y}-\left(\sum \mathrm{x}\right)\left(\sum \mathrm{y}\right)}{\mathrm{n} \sum \mathrm{x}^{2}-\left(\sum \mathrm{x}\right)^{2}} \\
& \alpha=\bar{y}-\beta \overline{\mathrm{x}}
\end{aligned}
$$

figure from http://standards.nctm.org

## Significance of a regression line

- How sure are you that
- the slope of the line $\neq 0$ ?
- the intercept of the line $\neq 0$ ? [or some other slope to test]
- For the slope, use the Student's t-test
- $\mathrm{H}_{0}$ : slope $=0$

$$
\mathrm{H}_{\mathrm{a}}: \text { slope } \neq 0
$$

and calculate $\mathrm{t}=($ estimated slope - slope being tested $) / \mathrm{s}_{\mathrm{b}}$ where $\mathrm{s}_{\mathrm{b}}$ is the standard error of the slope (a messy equation)

- The intercept can be tested in a similar manner
- but value of intercept may be of questionable biological meaning

WIBR Statistics for Biologists Course, © Whitehead Institute, Nov 2007

## Correlation

- The correlation coefficient (r) describes the strength and the direction of the relationship between two variables $\quad-1 \leq r \leq 1$
- coefficient of determination $=r^{2}$ describes the percentage of the variation in $y$ that is determined by x (e.g., the regression line)


WIBR Statistics for Biologists Course, © Whitehead Institute, Nov 2007

## Correlation commands

- Standard correlation analysis with assumes that the Y's at each X - and the X's at each Y -- are normal
- In Excel
- PEARSON or CORREL
- ex: PEARSON(A2:A6,B2:B6)
- In R
- cor(a, b, method=c("pearson", "kendall", "spearman"))
- "pearson" is the standard method (with assumptions)
- other methods are nonparametric (without assumptions)
- try cor.test(a, b) to test for correlation

Sample data: Determining over-representation

- Input data

|  | Development | Any GO term | Ratio |
| :---: | :---: | :---: | :---: |
| Genome | 900 | 15,000 | 0.06 |
| Gene set | 15 | 150 | 0.10 |

- Is the gene set ratio significantly larger than the genome ratio?
- Biological interpretations:
- Is the gene set enriched for developmental genes?
- Is development one of the "themes" of this gene set?

WIBR Statistics for Biologists Course, © Whitehead Institute, Nov 2007

Hypergeometric distribution: Determining over-representation

- The hypergeometric distribution describes the probability of "sampling without replacement"
-P (drawing cards) vs. P (rolling dice)
- To get the probability of an event occurring more often than $p$ times in a set of size $n$, we have two choices:

1: $\quad \mathrm{P}(\mathrm{p}+1)+\mathrm{P}(\mathrm{p}+2)+\ldots+\mathrm{P}(\mathrm{n})$
2: $\quad 1-(P(0)+P(1)+\ldots+P(p))$

## Example: Determining overrepresentation

- Using Gene Ontology terms, 15,000 genes from a model species have been annotated
- A screen identifies 150 genes.
- We're interested in "development" (GO:0007275)
- Number of genes assigned this term:
- In the whole genome: 900
- In the genes from our screen: 15
- Are more genes from this screen involved in development than one would expect by chance?


## More precise question: Determining over-representation

Given the prevalence P of a factor (ex: a GO term) in a population of size N and the prevalence of p in a sample ( n ),

- In a random sample of size n , what is the probability that this factor would be present more often than observed?
- What is the sum of the probabilities for $(p+1) / \mathrm{n}$ to $\mathrm{n} / \mathrm{n}$ times?
- Is this P (more often than observed) close to zero?
- If so, is the observed prevalence significantly greater than the expected prevalence?

Hypergeometric distribution: Determining over-representation

- Input:

|  | \# of Hits | Size |
| :---: | :---: | :---: |
| Gene set | 15 | 150 |
| "Genome" | 900 | 15,000 |

- In Excel: HYPGEOMDIST
- calculates each separate probability
- they must be summed
- In R: dhyper( $0: \mathrm{h}, \mathrm{H}, \mathrm{N}-\mathrm{H}, \mathrm{n}$ ) for a list of separate probabilities

| $\mathrm{h}=$ hits in sample $=15$ | $\mathrm{n}=$ size of sample $=150$ |
| :---: | :---: |
| $\mathrm{H}=$ Hits in population $=900$ | $\mathrm{~N}=$ size of population $=15,000$ |

# Hypergeometric distribution: input and output from $R$ 

- Input data

| $\mathrm{h}=$ hits in sample $=15$ | $\mathrm{n}=$ size of sample $=150$ |
| :---: | :---: |
| $\mathrm{H}=$ Hits in population $=900$ | $\mathrm{~N}=$ size of population $=15,000$ |

- Get the separate probabilities and find their cumulative sum: pvals $=1-\operatorname{cumsum}(\operatorname{dhyper}(0: h, \mathrm{H}, \mathrm{N}-\mathrm{H}, \mathrm{n}))$
$>$ pvals $=1$ - cumsum (dhyper ( $0: 15,900,15000-900,150$ ) )
> pvals
$\left[\begin{array}{lllllll}{[1]} & 0.99991121 & 0.99905197 & 0.99492728 & 0.98183123 & 0.95089329\end{array}\right.$
[13] 0.116326980 .066673490 .035809220 .01805521
- Get the last in the list and print it out
> pval = pvals[length(pvals)]
> cat("p = ", pval, " $\backslash \mathrm{n}$ ")
$p=0.01805521$


## Summary

- Analyzing intersection between 2 sets
- Fisher's exact test or chi-squared test
- Comparing proportions
- Chi-squared test
- Analyzing survival data
- Kaplan Meier curves; log-rank test
- Regression and correlation analysis
- Determining over-representation
- Hypergeometric distribution
- Exercises


## Practical applications of GO enrichment analysis

- Tools like GO Term Finder (and many other GO tools) can analyze all GO terms for over-representation
- Multiple hypothesis testing is usually necessary
- Statistical vs. biological significance:
- beware of too general or too specific terms


## References

- Zar JH. Biostatistical Analysis. Prentice Hall, 1998. [or any general biostatistics textbook]
- Dalgaard P. Introductory Statistics with R. Springer, 2002.
- Venables W.N. and Ripley B.D. Modern Applied Statistics with S. Springer, 2002.
- Tufte E. The Visual Display of Quantitative Information. Graphics Press, 1992.
- Lots of web sites
- R documentation


## Exercise 3 - To do

Using Excel and R:

- Analyzing intersection between 2 sets - Fisher's exact test or chi-squared test
- Comparing proportions
- Chi-squared test
- Determining over-representation
- Hypergeometric distribution
- Analyzing survival data
- Kaplan Meier curves; log-rank test
- Regression and correlation analysis

