

Statistics for Biologists

Lecture 1: Descriptive statistics and introduction to inferential statistics

George Bell, Ph.D. Senior Bioinformatics Scientist Bioinformatics and Research Computing Whitehead Institute

Course goals

- Review concepts in statistics most relevant to Whitehead researchers
- Discuss general biological questions and examples of statistical applications
- Perform methods using Excel and/or R
- Encourage the use of statistics before, during, and after experimentation

Bioinformatics and Research Computing

Outline

- Why use statistics?
- Descriptive statistics
- Visualization of quantitative data
- Intro to inferential statistics
- False positives and false negatives
- Statistics software
- Exercises

Why use statistics?

- To reduce data to a manageable amount with an effective summary
- To determine if data are worth getting excited about
- To separate interesting variability from uninteresting variability
- To measure the reliability and confidence of your or others' conclusions
- To plan more effective experiments

Descriptive statistics

- Measures of central tendency + variability
- Generally try to describe a population using sample data
- No hypotheses; no p-values; no comparisons
- Reduce the quantity of data
- Should data be summarized?
- What measures should be used?

The mean

- Other names: average; arithmetic mean
- Sample mean = \overline{X}
- Population mean = μ
- The center of gravity of a histogram
- All measurements contribute
- Not robust to outliers
- More robust modification: the trimmed mean
- Geometric mean = ⁿ√a₁ a₂ ... a_n
 <= arithmetic mean; only works with positive numbers antilog of the (arithmetic) mean of the logs of values

The median

- The middle measurement in an ordered set of data
- With an even number of points, use the mean of the two center points
- Divides a histogram into two equal areas
- Most measurements don't contribute
- Contains less information than the mean
- Robust (resistant) to outliers

Measures of variability

- Range (minimum maximum)
- Interquartile range (25th 75th percentiles)
- Standard deviation
 - describes variability in a population
 - STDEV in Excel
 - Has same units as original measurements
 - positive square root of variance
- Standard error [of the mean] (SE; SEM)
 - describes the stdev of sample means

N = number of measurements

• coefficient of variation

CV = 100 * stdev/mean

Visualizing data

- What are you trying to show?
- Is the figure understandable on its own?
- Is the main idea(s) clear?
- Have you removed unnecessary "junk"?

Visualizing data

- All data, summaries, or both?
- Some types of figures:
 - scatterplot
 - bar plot (mean \pm stdev)
 - boxplot (median, IQR, outliers)
 - histogram
 - volcano plot (fold change vs. p-value)
 - pie chart

Hypothesis testing - part 1

- In statistics, it's a formal way of asking a question.
- Differentiates between two hypotheses:
 null hypothesis (H₀): "there's no difference"
 alternative hypothesis (H_a): a ≠ b; a < b; a > b
- The magnitude of the difference is not part of the hypothesis.
- Statistical hypotheses are stated <u>before</u> data collection and examination.

Hypothesis testing - part 2

- If there's enough evidence, we can reject the null hypothesis.
- If there's not enough evidence, we can't say that there is no difference just that there is not enough evidence to support a difference.
- Alternative hypotheses:

 $a \neq b \implies$ 2-tailed tests

a < b or $a > b \implies 1$ -tailed tests

Hypothesis testing and decision making

- 1. Calculate test statistic
- 2. Compare test statistic to distribution of values obtained if there was no difference between data sets (e.g., if H_0 was true)
- 3. Get p-value

= probability of getting a result at least this extreme if H_0 were true

- 4. Compare p-value to selected cutoff (α; "significance level")
- 5. Accept H_0 ("there is no difference") or reject H_0 ("there is a difference")

Types of errors with hypothesis testing

	Conclusion from statistical test		
Reality		Accept H ₀ (means are the same)	Reject H ₀ (means differ)
	Means are the same	Everybody's happy	Type I error (False positive) probability = α
	Means differ	Type II error (False negative) probability = β	Everybody's happy

Types of errors with hypothesis testing

- The p-value from a statistical test reflects the false positive error rate.
- The p-value indicates nothing about your confidence at identifying a difference that exists in reality.
- To get an idea of the false negative error rate, calculate the power of the test: power = $1 - \beta$ ex: if power = 0.95, ... inputs: n; stdev; true difference; α

Selecting a significance level (a)

- The choice of α should be made before looking at the data.
- What error rate can you and others tolerate?
- Choosing a significance level of 0.05 is based more on convention than on statistical reasoning.
- Increasing n (sample size) reduces the probability of false positives and false negatives.
- If the p-value for a statistical test is close to α, increasing n may help to determine which hypothesis is supported.
- Substituting another statistical test (or variation) just to achieve α invalidates your statistics.
- α and β are inversely related.

Receiver Operating Characteristic (ROC) curves

- red curve: distribution of positive data
- blue curve: distribution of negative data

A.U.C. = area under curve sensitivity = TP/(TP+FN) specificity = TN/(FP+TN)

ROC curves: good scenario

p < 0.043

- red curve: distribution of positive data
- blue curve: distribution of negative data

A.U.C. = area under curve sensitivity = TP/(TP+FN) specificity = TN/(FP+TN)

ROC curves: bad scenario

- red curve: distribution of positive data
- blue curve: distribution of negative data

A.U.C. = area under curve sensitivity = TP/(TP+FN) specificity = TN/(FP+TN)

Probability distributions

- Functions describing the probability that a variable will have a given value.
- discrete or continuous
- Examples of distributions
 - normal (Gaussian)
 - binomial: successes in P/F experiments
 - Student's t: a family of distributions for small sample sizes
 - approaches the normal when N (or df) approaches infinity

How normal is your distribution?

- Plot a histogram.
 - Is it bell-shaped?
- Compare mean and median.
 - Are they the same?
- Try verifying the empirical rule

 What percent of measurements are ± σ, etc.?
- Plot a quantile-quantile (q-q) plot
 - Does it make a straight line?

Transformations to create a more normal distribution

- For positively (right) skewed data:
 - Square root
 - Logarithm
 - Inverse (1/x)

 $B = A^{(1/3)}$

- For negatively skewed data:
 - Reflect data \rightarrow add constant \rightarrow
 - \rightarrow perform above method \rightarrow reflect again
- Check results with a quantile-quantile plot: sample quantiles vs.
 Normal Q-Q plot for A
 Normal Q-Q plot for B
 Normal Q-Q plot for B
 Normal Q-Q plot for B

WIBR Statistics for Biologists Course, © Whitehead Institute, Nov 2007

C = log2(A)

Central limit theorem

- Even with data that comes from a distribution that is far from normal, the distribution of averages tends to be normal.
- This distribution of averages can be made arbitrarily close to normal by increasing the sample size.

• The theorem permits inferences about a population when we only have data about a sample

The Empirical Rule

For a normal distribution:

~68% of the data fall in the interval mean ± 1 stdev ~95% of the data: mean ± 2 stdevs ~99.7% of the data: mean ± 3 stdevs

WIBR Statistics for Biologists Course, © Whitehead Institute, Nov 2007

Describing data relative to a normal distribution

• Z-score = number of standard deviations from a population mean in a normal distribution

 $z = \frac{\text{measurement} - \text{mean}}{\text{stdev}}$

- The Empirical Rule can then be applied
- Ex: sample score = 125
 - population mean = 100
 - stdev = 15

z = (125 - 100) / 15 = 1.67

pnorm(125, mean=100, sd=15)

- 95.2% measurements are below

Statistics tools

- Excel
- Office Calc (www.openoffice.org)
- The R Project for Statistical Computing

 http://www.r-project.org/
- Bioconductor (microarray packages for R)
 http://www.bioconductor.org/
- BaRC analysis tools:

- http://iona.wi.mit.edu/bio/tools/bioc_tools.html

Excel or Office Calc for statistics

- Good:
 - familiar
 - friendly and flexible interface
- Bad
 - not good for inferential statistics
 - not robust on older computers
 - Limited number of rows: 2¹⁶

R for statistics

- Good:
 - powerful and flexible
 - created and used by Ph.D. statisticians
 - commands can be saved as scripts
 - comes with microarray analysis routines
- Bad:
 - command-line interface takes a while to figure out

Exercise 1 - Excel syntax

A2	Cell reference	
A2:A100	Series of cells	
=B5	Formula	
=\$B\$5	Absolute link ('\$')	
=data!B4	Reference other sheet	
=[otherFile.xls]data!B4	Reference other file	

Exercise 1: Excel functions

- AVERAGE
- MEDIAN
- STDEV
- TRIMMEAN
- PERCENTILE
- CONFIDENCE
- VLOOKUP
- Tools >> Data Analysis

Introduction to R

- # Read a data file
- dat = read.delim("Data1.txt", header=T) dim(dat) # Get dimension of matrix summary(dat) # Get data summary colnames(dat) # Get names of columns mean(dat[,"my.col.1"]) # Draw a boxplot of first 2 columns of matrix boxplot(dat[,1], dat[,2])q() # quit [or use pull-down menu]

Summary

- Why use statistics?
- Descriptive statistics
 - central tendency + variability
- Visualization of quantitative data – What are you trying to show?
- Inferential statistics: H_0 , H_a , α , β
- False positives and false negatives
- Software for statistics
- Exercises

References

- Zar JH. *Biostatistical Analysis*. Prentice Hall, 1998. [or any general biostatistics textbook]
- Dalgaard P. *Introductory Statistics with R*. Springer, 2002.
- Venables W.N. and Ripley B.D. *Modern Applied Statistics with S.* Springer, 2002.
- Tufte E. *The Visual Display of Quantitative Information*. Graphics Press, 1992.
- Lots of web sites
- R documentation

Exercise 1 - To do

Using Excel and R:

- Calculate some descriptive statistics
 mean, median, stdev, IQR, CI
- Draw some figures
 - histogram, scatterplot, boxplot, Q-Q plot