## Introduction to single-cell RNAseq analysis

BaRC Hot Topics Bioinformatics and Research Computing Whitehead Institute March 7<sup>th</sup> 2019 http://barc.wi.mit.edu/hot\_topics/



WHITEHEAD INSTITUTE

## Outline

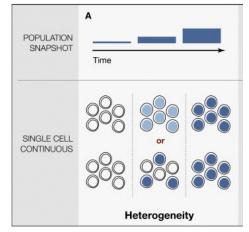
- Introduction to single-cell RNA-seq data analysis
  - Overview of scRNA-seq technology, cell barcoding, UMIs
  - Experimental design
  - Analysis pipeline
    - Preprocessing and quality control
    - Normalization
    - Dimensionality reduction
    - Clustering of cells
    - Trajectory inference
    - Differential expression and functional annotation
- Hands-on analysis using the package Seurat



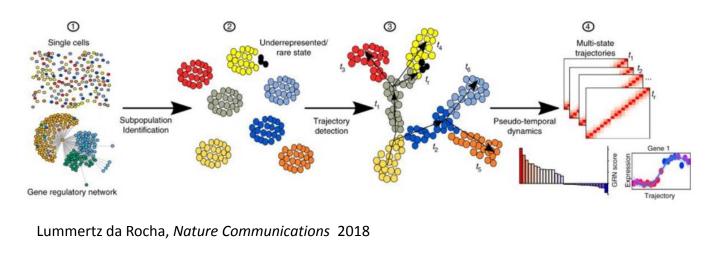


### Why do single cell RNA-seq?

- Identify expression profiles of individual cells (that may be missed with bulk RNA-seq)
- Discover of new cell states/types
- Order cells within a developmental trajectory

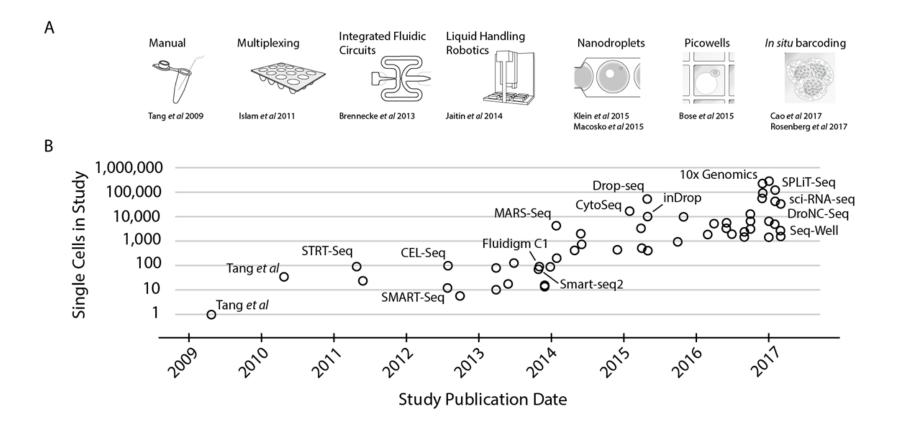


Etzrodt, Cell Stem Cell 2014





### Advances on scRNA-seq technology

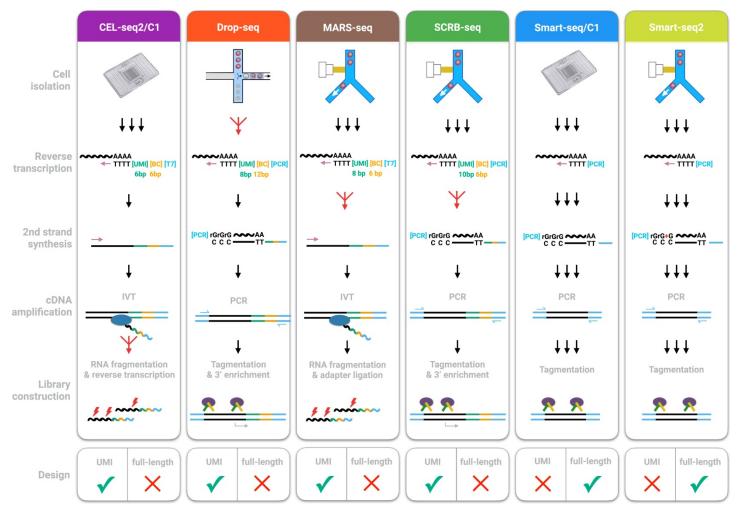


Svensson, Vento-Tormo, and Teichmann, arXiv:1704.01379v2



Whitehead Institute

#### Library preparation steps



Comparative Analysis of Single-Cell RNA Sequencing Methods Ziegenhain et. al, Molecular Cell Volume 65, Issue 4, 16 February 2017,

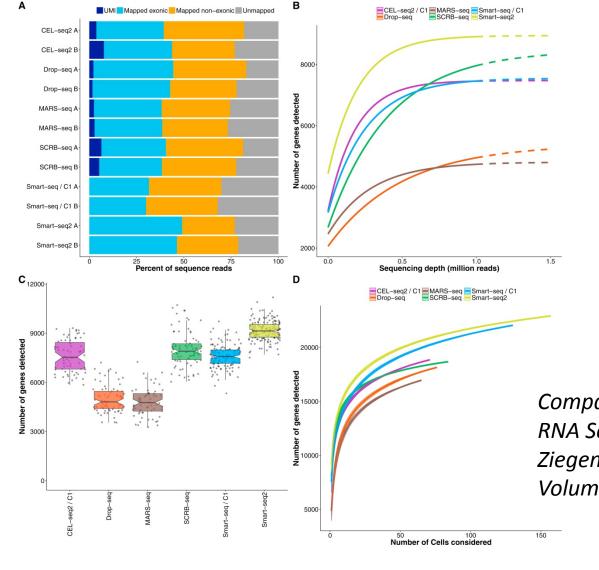
Ral

## Features of scRNA-seq methods

| Name               | Transcript coverage       | Strand specificity | Positional bias | UMI possible? |
|--------------------|---------------------------|--------------------|-----------------|---------------|
| Tang method        | Nearly full-length        | No                 | Strongly 3′     | No            |
| Smart-seq          | Full-length               | No                 | Medium 3′       | No            |
| Smart-seq2         | Full-length               | No                 | Weakly 3′       | No            |
| STRT-seq & STRT/C1 | 5´-only                   | Yes                | 5´-only         | Yes           |
| CEL-seq            | 3´-only                   | Yes                | 3´-only         | No            |
| CEL-seq2           | 3´-only                   | Yes                | 3´-only         | Yes           |
| MARS-seq           | 3´-only                   | Yes                | 3´-only         | Yes           |
| CytoSeq            | Pre-defined genes<br>only | Yes                | 3´-only         | Yes           |
| Drop-seq/InDrop    | 3´-only                   | Yes                | 3´-only         | Yes           |

Single-cell RNA-sequencing: The future of genome biology is now Simone Picelli, RNA Biology, Volume 14, 2017 - Issue 5

#### Sensitivity of scRNA-seq methods



Comparative Analysis of Single-Cell RNA Sequencing Methods Ziegenhain et. al, Molecular Cell Volume 65, Issue 4, 16 Feb 2017

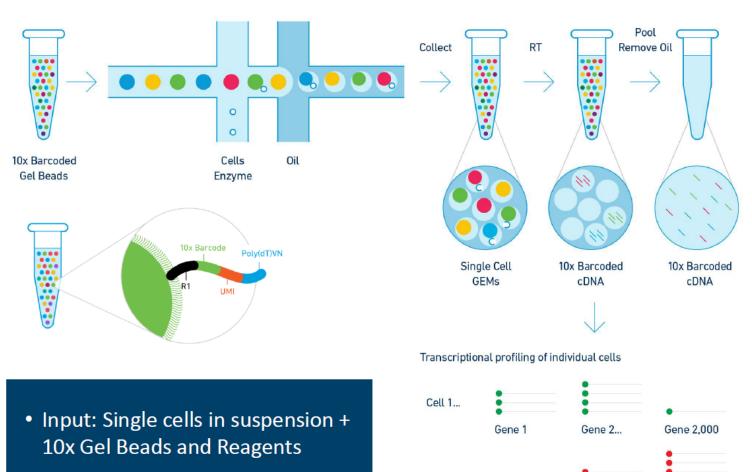


7

WHITEHEAD INSTITUTE

#### Single Cell Digital Gene Expression





Cell 5,000

Gene 1

 Output: Digital gene expression profiles from every partitioned cell

https://www.10xgenomics.com/videos/training-modules/

Gene 2...

Gene 2,000

## Libraries Compatible with Illumina<sup>®</sup> Sequencers 10×

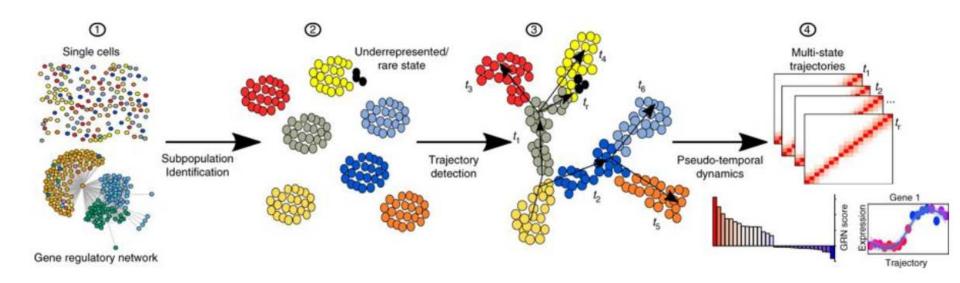


| Sequencing<br>Read | Description           | Length                | Notes                   |
|--------------------|-----------------------|-----------------------|-------------------------|
| Read 1             | Cell Barcode+UMI read | 26 nt                 | Extra cycles are unused |
| i7 Index           | Sample Index read     | 8 nt                  | Extra cycles are unused |
| Read 2             | RNA read              | 98nt<br>(recommended) | Length may vary         |

#### Validated on: HiSeq 2500 (RR and HO), HiSeq 3000/4000, NextSeq 500/550, MiSeq

https://www.10xgenomics.com/videos/training-modules/

#### Goals of scRNA-seq analysis methods



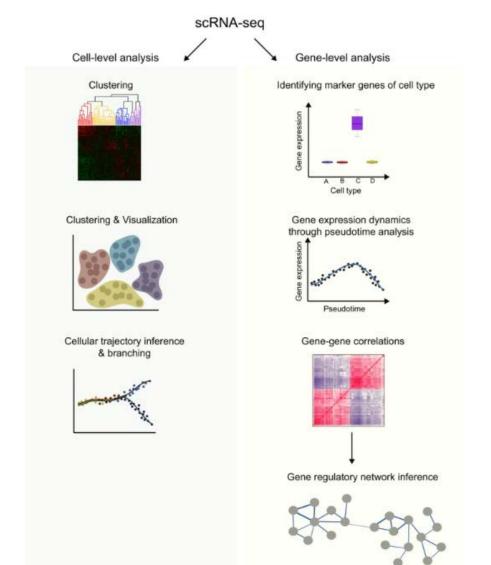
Lummertz da Rocha, Nature Communications 2018



10

WHITEHEAD INSTITUTE

#### Goals of scRNA-seq analysis methods



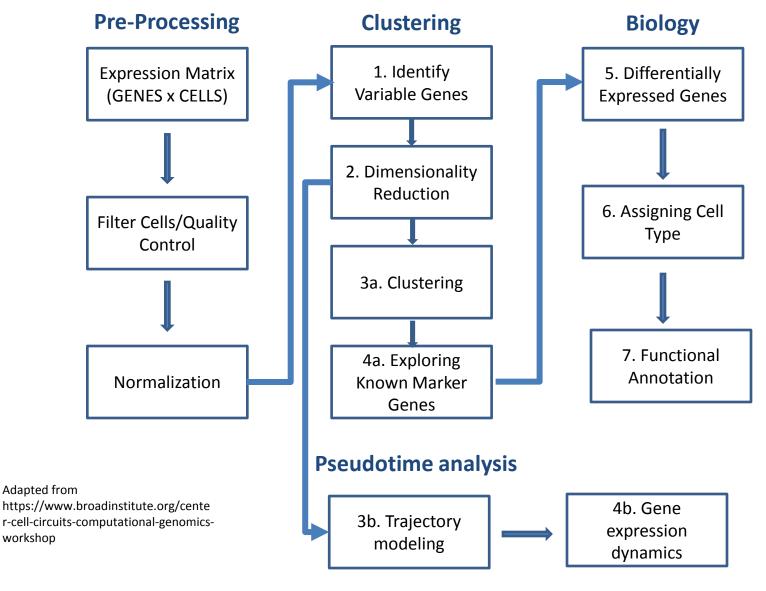
Computational approaches for interpreting scRNA-seq data, Rostom et al. FEBS Letters, Volume: 591, Issue: 15.

11

BaBC



#### Analysis pipeline



10 BaRC

WHITEHEAD INSTITUTE

#### Technical challenges

- Data is noisy due to
  - cDNA amplification bias
  - mRNA capture efficiency
  - drop outs: large number of genes with 0 counts due to limiting mRNA. Zero expression doesn't mean the gene isn't on.
- Cells can change or die during isolation.





## **Experimental design**

- Process your samples in a way that the condition can not be confounded with a batch effect, like processing date, facility, or reagents used.
  - *i.e.* If you have to process your cells in several batches, each batch should contain an equal number of cells from each condition.
- If you are comparing your data to published data you may have to remove batch effects.
  - R packages like Combat can be used for this (https://www.rdocumentation.org/packages/sva/versions/ 3.20.0/topics/ComBat)
  - See "Dealing with confounders" section of the "Analysis of single cell RNA-seq data" course (Hemberg Group).



#### Preprocessing for Smart-seq2

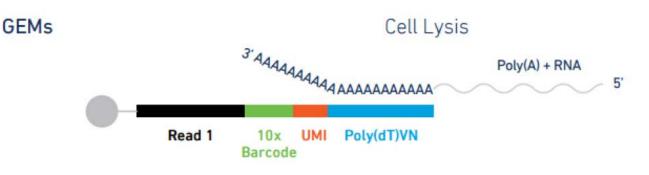
• Demultiplexing: assign all the reads with the same cell barcode to the same cell. Done at the sequencing facility.

• We can check the quality of the reads with *FastQC* and the library composition with *FastQ Screen* as we would do with bulk RNA-seq.





#### Preprocessing for technologies using Unique Molecular Identifiers (UMIs)



- Demultiplexing: assign all the reads with the same cell barcode to the same cell.
- Remove PCR duplicates: if several reads have the same UMI and map to the same location in the genome, keep only one.
  - Cell range software for 10x data (run by the genome technology core)
  - Drop-seq tools for drop-seq and seq-well data

WHITEHEAD INSTITUTE



https://www.10xgenomics.com/videos/training-modules/<sup>16</sup>

## Demultiplexing and counting 10x data

#### Cell Ranger<sup>™</sup> Pipelines



| Pipeline           | Functionality                                                                                                                                                                                                                                                                                                                   |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| cellranger mkfastq | Barcode-aware demultiplexing from BCL to FASTQ                                                                                                                                                                                                                                                                                  |  |
| cellranger count   | <ul> <li>Read-level analysis of a single library <ul> <li>Transcriptome alignment with STAR</li> <li>Barcode processing</li> <li>Gene counting</li> </ul> </li> <li>Produces gene/cell matrix</li> <li>Produces expression analysis and static visualizations</li> <li>Produces .cloupe file for Loupe™ Cell Browser</li> </ul> |  |

## CellRanger web summary

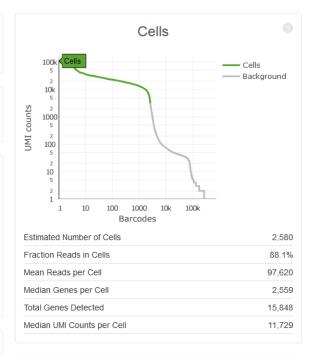


SUMMARY ANALYSIS

Cell Ranger

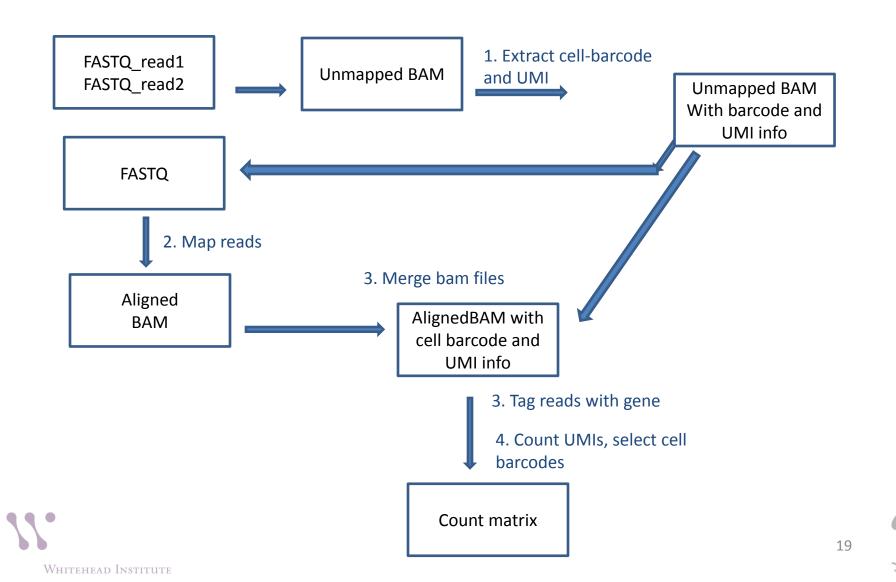
| Estimated Number of Cells 2,580 |                             |  |  |
|---------------------------------|-----------------------------|--|--|
| Mean Reads per Cell<br>97,620   | Median Genes per Cell 2,559 |  |  |
| Seque                           | encing                      |  |  |
| Number of Reads                 | 251,861,83                  |  |  |
| Valid Barcodes                  | 96.19                       |  |  |
| Sequencing Saturation           | 78.19                       |  |  |
| Q30 Bases in Barcode            | 94.7                        |  |  |
| Q30 Bases in RNA Read           | 66.6                        |  |  |
| Q30 Bases in Sample Index       | 87.99                       |  |  |
| Q30 Bases in UMI                | 94.5                        |  |  |

| Mapping                                        |       |
|------------------------------------------------|-------|
| Reads Mapped to Genome                         | 86.4% |
| Reads Mapped Confidently to Genome             | 80.5% |
| Reads Mapped Confidently to Intergenic Regions | 2.7%  |
| Reads Mapped Confidently to Intronic Regions   | 6.7%  |
| Reads Mapped Confidently to Exonic Regions     | 71.0% |
| Reads Mapped Confidently to Transcriptome      | 69.2% |
| Reads Mapped Antisense to Gene                 | 0.8%  |

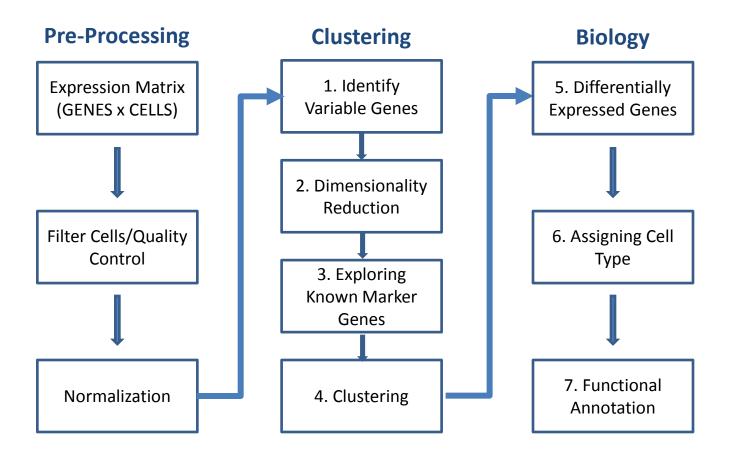


| Sam                 | ble               |
|---------------------|-------------------|
| Name                | L21_314           |
| Description         |                   |
| Transcriptome       | mm10              |
| Chemistry           | Single Cell 3' v2 |
| Cell Ranger Version | 2.1.1             |

## Demultiplexing and counting Drop-seq or Seq-well data



#### Analysis pipeline



WHITEHEAD INSTITUTE

#### Quality control and filtering

- Quality control
  - Number of reads per cell
  - Number of genes detected per cell
  - Proportion of reads mapping to mitochondrial reads
- Remove cells with poor quality
  - Filter out cells with percentage of mitochondrial reads higher than a cut off
  - Filter out cells with less than a lower threshold on the number of genes or counts per cell
- Remove doublets (two cells captured with one bead in the droplet)
  - Filter out cells with more than an upper threshold on the number of genes or counts per cell in your data
  - More sophisticated way of removing doublets
    - https://github.com/JonathanShor/DoubletDetection
    - https://github.com/AllonKleinLab/scrublet
    - https://www.biorxiv.org/content/early/2018/06/20/352484





#### Normalization Correct for sequencing depth (i.e. library size) of each cell so we can compare across cells

- 1. Normalize gene expression for each cell by total expression
- 2. Multiply by a scale factor (*i.e.* 10,000).
- 3. Log transform the scaled counts

This is the log normalization implemented in Seurat





Clustering and Biology: What do you want to learn from the experiment?

- Classify cells and discover new cell populations
- Compare gene expression between different cell populations
- Reconstruct developmental 'trajectories' to reveal cell fate decisions of distinct cell subpopulations





### Lots of software available to analyze singlecell RNA-seq data

- Seurat
- Monocle
- ScanPy
- Destiny
- See

https://github.com/seandavi/awesome-single-cell





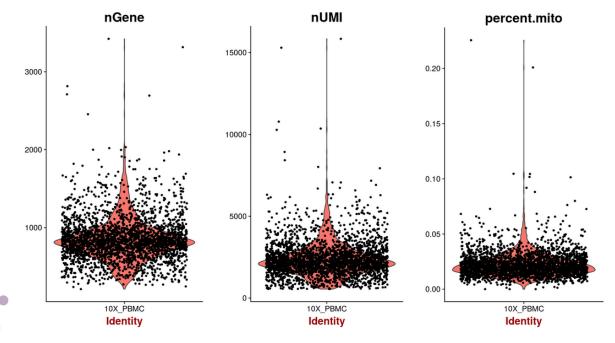
## Seurat https://satijalab.org/seurat/

- Seurat is an R package designed for QC, analysis, and exploration of single cell RNA-seq data.
- Developed and by the Satija Lab at the New York Genome Center.
- It is well maintained and well documented.
- It has a built in function to read 10x Genomics data.
- It has implemented most of the steps needed in common analyses.



#### Read data and explore QC metrics plots

- Read data
  - Read10X()
  - read.table()
- Create Seurat object: CreateSeuratObject()
- Calculate the % mitochondrial genes
- Plot nUMI, nGenes and % mito to decide on cut offs



https://satijalab.org/se urat/pbmc3k\_tutorial. html





#### Select cells, normalize and scale data.

- Filter cells based on number of genes detected and percent of mitochondrial genes
  - SObj <- FilterCells(object = SObj, subset.names = c("nGene","percent.mito"), low.thresholds = c(4000, -Inf), high.thresholds = c(11000, 0.06))
- Normalize counts

```
SObj <- NormalizeData(object = SObj,
    normalization.method = "LogNormalize",
    scale.factor = 1e4)
```

• Scaling the data and removing unwanted sources of variation

**SObj** <- ScaleData(object = SObj) # just scale genes across samples

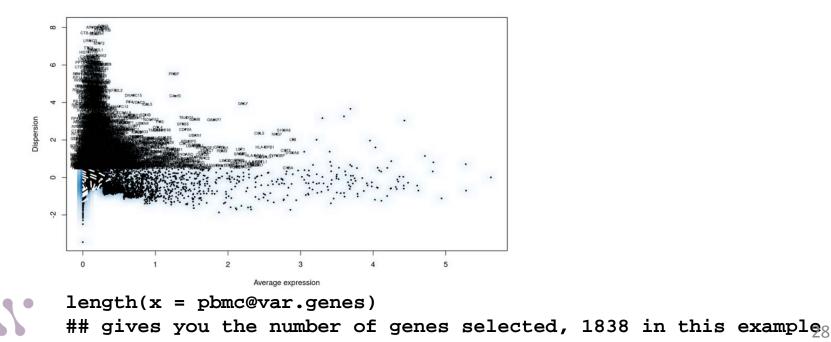
SObj <- ScaleData(object = SObj, vars.to.regress</pre>

= c("batch"))# remove cell-cell variation in gene expression driven by the batch/day samples were processed.

## Select variable genes that will be used for dimensionality reduction

"FindVariableGenes" calculates the average expression and dispersion for each gene, places these genes into bins, and then calculates a z-score for dispersion within each bin. This helps control for the relationship between variability and average expression.

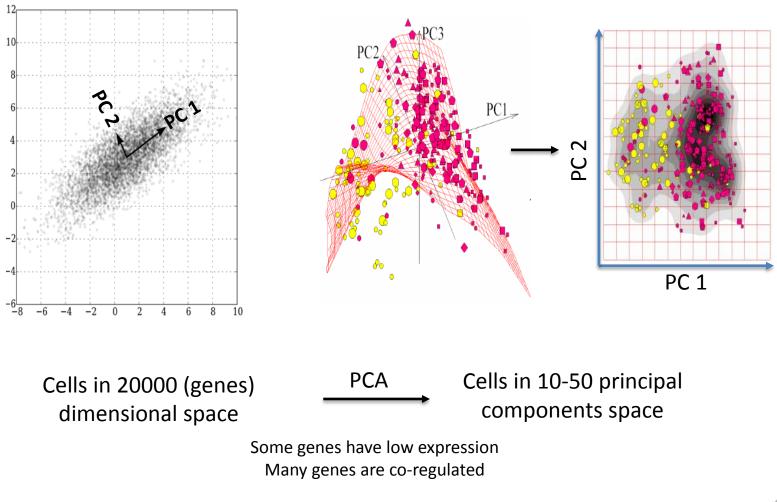
pbmc <- FindVariableGenes(object = pbmc, mean.function = ExpMean, dispersion.function = LogVMR, x.low.cutoff = 0.0125, x.high.cutoff = 3, y.cutoff = 0.5)





WHITEHEAD INSTITUTE

## Principal component analysis





Whitehead Institute

Wikipedia and adapted from Hojun Li

# Other dimensionality reduction methods

Cells in 20000 (genes) dimensional space

PCA

Cells in 10-50 principal components space

How can we further summarize these multiple PCAs into just 2 dimensions?

Cells in 10-50 principal components space

tSNE, UMAP, other

Cells in 2D space





## t-Distributed Stochastic Neighbor Embedding (tSNE)

- Takes a set of points in a high-dimensional space and finds a faithful representation of those points in a lower-dimensional space, typically the 2D plane.
- The algorithm is **non-linear** and adapts to the underlying data, performing different transformations on different regions.
- The t-SNE algorithm adapts its notion of "distance" to regional density variations in the data set. As a result, it naturally expands dense clusters, and contracts sparse ones, evening out cluster sizes.
- Distances between clusters might not mean anything.

https://distill.pub/2016/misread-tsne/

## UMAP

Uniform manifold approximation and projection

- It is a non linear dimensionality reduction algorithm.
- Preserves the local structure but also the global structure and the continuity of the cell subsets better.
- See PMID: 30531897 for comparison of Seurat and UMAP.





#### Dimensionality reduction and clustering

• Linear dimensionality reduction: PCA

pbmc <- RunPCA(object = pbmc, pc.genes = pbmc@var.genes, do.print = TRUE, pcs.print = 1:5, genes.print = 5)

 Cluster the cells and run non-linear dimensional reduction (tSNE)

pbmc <- FindClusters(object = pbmc, reduction.type = "pca", dims.use =
1:10, resolution = 0.6, print.output = 0, save.SNN = TRUE)</pre>

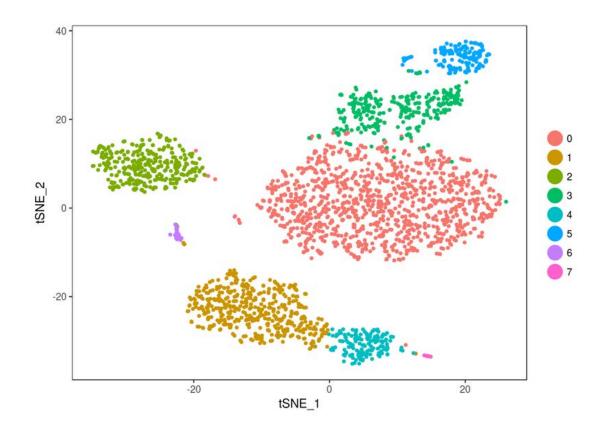
pbmc <- RunTSNE(object = pbmc, dims.use = 1:10, do.fast = TRUE)</pre>





#### Visualize the tSNE plot

TSNEPlot(object = pbmc)



Location of cells on the plot is coming from the tSNE plot, color is coming from the "FindClusters" the algorithm.



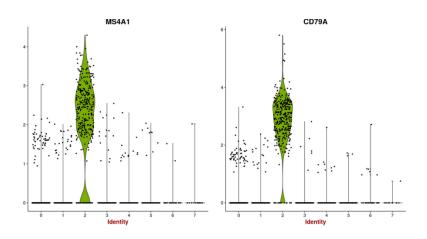


#### Differential expression and visualization

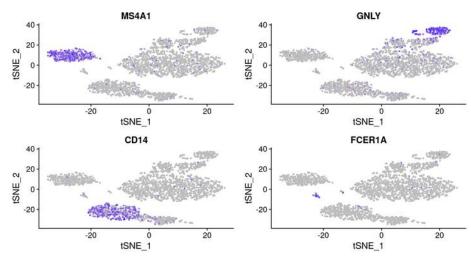
• Finding differentially expressed genes (cluster biomarkers)

# find all markers distinguishing cluster 5 from clusters 0 and 3
cluster5.markers <- FindMarkers(object = pbmc, ident.1 = 5, ident.2 =
c(0, 3), min.pct = 0.25)</pre>

• Visualize DE genes



VInPlot(object = pbmc, features.plot = c("MS4A1", "CD79A"))



FeaturePlot(object = pbmc, features.plot = c("MS4A1", "GNLY", "CD14", "FCER1A"), cols.use = c("grey", "blue"),

reduction.use = "tsne")



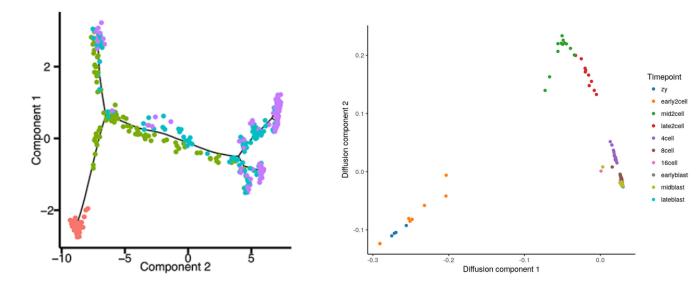
35

Whitehead Institute

#### Reconstructing 'trajectories' Pseudotime analysis

Applicable when studying a process where cells change continuously. For example cell differentiation during development, or cell response to a stimulus.

- Monocle
- TSCAN
- Slicer
- Slingshot
- Diffusion map
  - Scanpy,
  - Seurat
  - density







## **References and resources**

- A practical guide to single-cell RNAsequencing for biomedical research and clinical applica tions. PMID: 28821273
- "Analysis of single cell RNA-seq data" course (Hemberg Group).
- Single cell RNA sequencing NGS Analysis NYU
- 2017/2018 Single Cell RNA Sequencing Analysis Workshop (UCD,UCB,UCSF)
- seandavi/awesome-single-cell
- Broad Institute single cell portal
- Tabula Muris (https://tabula-muris.ds.czbiohub.org/)





## Exercises

- Goal:
  - To walk you through an example analysis of scRNA-seq data.
    - Exploring the data
    - Performing quality control
    - Identifying cell type subsets.
  - To introduce you to scRNA-seq analysis using the Seurat package.
- We will be analyzing the a dataset of Non-Small Cell Lung Cancer Cells (NSCLC) freely available from 10X Genomics (https://support.10xgenomics.com/single-cellvdj/datasets/2.2.0/vdj\_v1\_hs\_nsclc\_5gex)



