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Outline 
• Introduction to single-cell RNA-seq data analysis 

– Overview of scRNA-seq technology, cell barcoding, UMIs 
– Experimental design 
– Analysis pipeline 

• Preprocessing and quality control 
• Normalization 
• Dimensionality reduction 
• Clustering of cells  
• Trajectory inference 
• Differential expression and functional annotation 

 
• Hands-on analysis using the package Seurat 
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Why do single cell RNA-seq? 
• Identify expression profiles of 

individual cells (that may be 
missed with bulk RNA-seq) 

• Discover of new cell states/types 
• Order cells within a 

developmental trajectory 
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Etzrodt, Cell Stem Cell 2014 

Lummertz da Rocha, Nature Communications  2018 



Advances on scRNA-seq technology 
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Svensson, Vento-Tormo, and Teichmann, arXiv:1704.01379v2  



Library preparation steps 
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Comparative Analysis of Single-Cell RNA Sequencing Methods 
Ziegenhain et. al, Molecular Cell 
Volume 65, Issue 4, 16 February 2017,  



Features of scRNA-seq methods 
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Name Transcript coverage Strand specificity Positional bias UMI possible? 

Tang method Nearly full-length No Strongly 3´ No 

Smart-seq Full-length No Medium 3´ No 

Smart-seq2 Full-length No Weakly 3´ No 

STRT-seq & STRT/C1 5´-only Yes 5´-only Yes 

CEL-seq 3´-only Yes 3´-only No 

CEL-seq2 3´-only Yes 3´-only Yes 

MARS-seq 3´-only Yes 3´-only Yes 

CytoSeq Pre-defined genes 
only Yes 3´-only Yes 

Drop-seq/InDrop 3´-only Yes 3´-only Yes 

Single-cell RNA-sequencing: The future of genome biology is now 
Simone Picelli, RNA Biology, Volume 14, 2017 - Issue 5 



Sensitivity of scRNA-seq methods 
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Comparative Analysis of Single-Cell 
RNA Sequencing Methods 
Ziegenhain et. al, Molecular Cell 
Volume 65, Issue 4, 16 Feb 2017 



https://www.10xgenomics.com/videos/training-modules/ 



https://www.10xgenomics.com/videos/training-modules/ 



Goals of scRNA-seq analysis methods 
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Lummertz da Rocha, Nature Communications  2018 



Goals of scRNA-seq analysis methods 
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Computational 
approaches for 
interpreting scRNA‐seq 
data, Rostom et al. FEBS 
Letters, Volume: 591, 
Issue: 15. 
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Analysis pipeline 

Expression Matrix 
(GENES x CELLS) 

1. Identify 
Variable Genes 

Pre-Processing Clustering Biology 

Filter Cells/Quality 
Control 

Normalization 

2. Dimensionality 
Reduction 

 
3a. Clustering 

 

 
4a. Exploring 

Known Marker 
Genes 

 

5. Differentially 
Expressed Genes 

6. Assigning Cell 
Type 

7. Functional 
Annotation 

Pseudotime analysis 
 

3b. Trajectory 
modeling 

 

 
4b. Gene 

expression 
dynamics  

 

Adapted from  
https://www.broadinstitute.org/cente
r-cell-circuits-computational-genomics-
workshop 



Technical challenges 

• Data is noisy due to  
– cDNA amplification bias  
– mRNA capture efficiency 
– drop outs: large number of genes with 0 counts 

due to limiting mRNA. Zero expression doesn't 
mean the gene isn’t on. 

• Cells can change or die during isolation. 
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Experimental design 
• Process your samples in a way that the condition can 

not be confounded with a batch effect, like processing 
date, facility, or reagents used. 
– i.e. If you have to process your cells in several batches, 

each batch should contain an equal number of cells from 
each condition. 

• If you are comparing your data to published data you 
may have to remove batch effects. 
– R packages like Combat can be used for this 

(https://www.rdocumentation.org/packages/sva/versions/
3.20.0/topics/ComBat)  

– See “Dealing with confounders” section of the "Analysis 
of single cell RNA-seq data" course (Hemberg Group). 
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Preprocessing for Smart-seq2  

• Demultiplexing: assign all the reads with the 
same cell barcode to the same cell. Done at 
the sequencing facility. 
 

• We can check the quality of the reads with 
FastQC and the library composition with FastQ 
Screen as we would do with bulk RNA-seq. 
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Preprocessing for technologies using Unique 
Molecular Identifiers (UMIs)   

• Demultiplexing: assign all the reads with the same 
cell barcode to the same cell. 

• Remove PCR duplicates: if several reads have the 
same UMI and map to the same location in the 
genome, keep only one.  
– Cell range software for 10x data (run by the genome 

technology core) 
– Drop-seq tools for drop-seq and seq-well data  

16 https://www.10xgenomics.com/videos/training-modules/ 



Demultiplexing and counting 10x data 

17 https://www.10xgenomics.com/videos/training-modules/ 



CellRanger web summary 
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Demultiplexing and counting Drop-seq or 
Seq-well data 

FASTQ_read1 
FASTQ_read2 Unmapped BAM 

1. Extract cell-barcode 
and UMI Unmapped BAM 

With barcode and 
UMI info 

FASTQ 

2. Map reads 

Aligned 
BAM 

3. Merge bam files 

AlignedBAM with 
cell barcode and 

UMI info 

3. Tag reads with gene 

4. Count UMIs, select cell 
barcodes 

Count matrix 
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Analysis pipeline 

Expression Matrix 
(GENES x CELLS) 

1. Identify 
Variable Genes 

Pre-Processing Clustering Biology 

Filter Cells/Quality 
Control 

Normalization 

2. Dimensionality 
Reduction 

3. Exploring 
Known Marker 

Genes 

4. Clustering 

5. Differentially 
Expressed Genes 

6. Assigning Cell 
Type 

7. Functional 
Annotation 

Adapted from  
https://www.broadinstitute.org/center-cell-circuits-computational-genomics-workshop 



Quality control and filtering 

• Quality control 
– Number of reads per cell 
– Number of genes detected per cell 
– Proportion of reads mapping to mitochondrial reads 

• Remove cells with poor quality 
– Filter out cells with percentage of mitochondrial reads higher than a cut off 
– Filter out cells with less than a lower threshold on the number of genes or 

counts per cell 
• Remove doublets (two cells captured with one bead in the droplet) 

– Filter out cells with more than an upper threshold on the number of genes or 
counts per cell in your data 

– More sophisticated way of removing doublets 
• https://github.com/JonathanShor/DoubletDetection 
• https://github.com/AllonKleinLab/scrublet 
• https://www.biorxiv.org/content/early/2018/06/20/352484 
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Normalization 
Correct for sequencing depth (i.e. library size) of each 

cell so we can compare across cells 

1. Normalize gene expression for each cell by 
total expression 

2. Multiply by a scale factor (i.e. 10,000).  
3. Log transform the scaled counts 

 
   This is the log normalization implemented in Seurat 
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Clustering and Biology: What do you want to 
learn from the experiment? 

• Classify cells and discover new cell 
populations 

• Compare gene expression between different 
cell populations 

• Reconstruct developmental 'trajectories' to 
reveal cell fate decisions of distinct cell 
subpopulations 
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Lots of software available to analyze single-
cell RNA-seq data 

• Seurat 
• Monocle 
• ScanPy 
• Destiny 
• See  

https://github.com/seandavi/awesome-single-cell 
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Seurat 
https://satijalab.org/seurat/ 

 
• Seurat is an R package designed for QC, analysis, 

and exploration of single cell RNA-seq data. 
• Developed and by the Satija Lab at the New York 

Genome Center. 
• It is well maintained and well documented. 
• It has a built in function to read 10x Genomics 

data. 
• It has implemented most of the steps needed in 

common analyses. 
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Read data and explore QC metrics plots  
• Read data 

– Read10X() 
– read.table() 

• Create Seurat object: CreateSeuratObject() 
• Calculate the % mitochondrial genes 
• Plot nUMI, nGenes and % mito to decide on cut offs 
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https://satijalab.org/se
urat/pbmc3k_tutorial.
html 



• Filter cells based on number of genes detected and percent of 
mitochondrial genes 

  SObj <- FilterCells(object = SObj,     
 subset.names    = c("nGene","percent.mito"), 
 low.thresholds  = c(4000, -Inf),  
      high.thresholds = c(11000, 0.06)) 
• Normalize counts 
  SObj <- NormalizeData(object = SObj, 
 normalization.method = "LogNormalize", 
 scale.factor  = 1e4) 
• Scaling the data and removing unwanted sources of variation 

SObj <- ScaleData(object = SObj) # just scale genes across 
samples 
SObj <- ScaleData(object = SObj, vars.to.regress 
= c(“batch"))# remove cell-cell variation in gene expression driven by  
the batch/day samples were processed. 
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Select cells, normalize and scale data. 



Select variable genes that will be used for 
dimensionality reduction 

“FindVariableGenes” calculates the average expression and dispersion for 
each gene, places these genes into bins, and then calculates a z-score for 
dispersion within each bin. This helps control for the relationship between 
variability and average expression. 
 

pbmc <- FindVariableGenes(object = pbmc, mean.function = 
ExpMean, dispersion.function = LogVMR, x.low.cutoff = 0.0125, 
x.high.cutoff = 3, y.cutoff = 0.5) 

 
 
 
 
 

 
length(x = pbmc@var.genes) 
## gives you the number of genes selected, 1838 in this example 28 



Principal component analysis 

Wikipedia and adapted from Hojun Li  

PC 1 

PC
 2

 

Cells in 20000 (genes) 
dimensional space 

PCA Cells in 10-50 principal 
components space 

Some genes have low expression 
Many genes are co-regulated 



Other dimensionality reduction 
methods 
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Cells in 20000 (genes) 
dimensional space 

PCA Cells in 10-50 principal 
components space 

How can we further summarize these multiple 
PCAs into just 2 dimensions? 

Cells in 10-50 principal 
components space 

tSNE, UMAP, other 
Cells in 2D space 



t-Distributed Stochastic Neighbor 
Embedding (tSNE) 

• Takes a set of points in a high-dimensional space and 
finds a faithful representation of those points in a 
lower-dimensional space, typically the 2D plane.  

• The algorithm is non-linear and adapts to the 
underlying data, performing different transformations 
on different regions. 

• The t-SNE algorithm adapts its notion of “distance” to 
regional density variations in the data set. As a result, it 
naturally expands dense clusters, and contracts sparse 
ones, evening out cluster sizes. 

• Distances between clusters might not mean anything. 
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https://distill.pub/2016/misread-tsne/ 



UMAP 
Uniform manifold approximation and projection  

• It is a non linear dimensionality reduction 
algorithm. 

• Preserves the local structure but also the 
global structure and the continuity of the cell 
subsets better. 

• See PMID: 30531897 for comparison of Seurat 
and UMAP. 
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Dimensionality reduction and clustering 

• Linear dimensionality reduction: PCA 
pbmc <- RunPCA(object = pbmc, pc.genes = pbmc@var.genes, do.print = 
TRUE, pcs.print = 1:5, genes.print = 5) 

 
• Cluster the cells and run non-linear 

dimensional reduction (tSNE) 
pbmc <- FindClusters(object = pbmc, reduction.type = "pca", dims.use = 
1:10, resolution = 0.6, print.output = 0, save.SNN = TRUE) 

 
pbmc <- RunTSNE(object = pbmc, dims.use = 1:10, do.fast = TRUE) 
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Visualize the tSNE plot 
TSNEPlot(object = pbmc) 
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Location of cells on the plot is coming from the tSNE plot, color is coming 
from the “FindClusters” the algorithm. 



Differential expression and visualization 
• Finding differentially expressed genes (cluster 

biomarkers) 
# find all markers distinguishing cluster 5 from clusters 0 and 3 
cluster5.markers <- FindMarkers(object = pbmc, ident.1 = 5, ident.2 = 
c(0, 3), min.pct = 0.25) 

• Visualize DE genes 
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VlnPlot(object = pbmc, features.plot = c("MS4A1", "CD79A")) 
FeaturePlot(object = pbmc, features.plot = c("MS4A1", "GNLY",  

"CD14", "FCER1A"), cols.use = c("grey", "blue"),  

 reduction.use = "tsne") 



Reconstructing 'trajectories‘ 
Pseudotime analysis 

Applicable when studying a process where cells change 
continuously. For example cell differentiation during 

development, or cell response to a stimulus. 
• Monocle 
• TSCAN 
• Slicer 
• Slingshot 
• Diffusion maps  

– Scanpy,  
– Seurat 
– density 
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References and resources 
• A practical guide to single-cell RNA-

sequencing for biomedical research and clinical applica
tions. PMID: 28821273  

• "Analysis of single cell RNA-seq data" course (Hemberg 
Group). 

• Single cell RNA sequencing - NGS Analysis - NYU 
• 2017/2018 Single Cell RNA Sequencing Analysis 

Workshop (UCD,UCB,UCSF) 
• seandavi/awesome-single-cell 
• Broad Institute single cell portal 
• Tabula Muris (https://tabula-muris.ds.czbiohub.org/) 
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Exercises 

• Goal: 
– To walk you through an example analysis of scRNA-seq 

data. 
• Exploring the data 
• Performing quality control 
• Identifying cell type subsets. 

– To introduce you to scRNA-seq analysis using the Seurat 
package. 

• We will be analyzing the a dataset of Non-Small Cell 
Lung Cancer Cells (NSCLC) freely available from 10X 
Genomics (https://support.10xgenomics.com/single-cell-
vdj/datasets/2.2.0/vdj_v1_hs_nsclc_5gex) 
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