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Outline

e Introduction to single-cell RNA-seq data analysis
— Overview of scRNA-seq technology, cell barcoding, UMIs
— Experimental design
— Analysis pipeline
* Preprocessing and quality control
e Normalization
e Dimensionality reduction
e Clustering of cells

* Trajectory inference
e Differential expression and functional annotation

 Hands-on analysis using the package Seurat



Why do single cell RNA-seq?
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Advances on scRNA-seq technology
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Svensson, Vento-Tormo, and Teichmann, arXiv:1704.01379v2



Library preparation steps
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Comparative Analysis of Single-Cell RNA Sequencing Methods
Ziegenhain et. al, Molecular Cell
Volume 65, Issue 4, 16 February 2017,




Features of scRNA-seq methods

Tang method Nearly full-length Strongly 3’
Smart-seq Full-length No Medium 3’ No
Smart-seq2 Full-length No Weakly 3° No
STRT-seq & STRT/C1 5’-only Yes 5’-only Yes
CEL-seq 3’-only Yes 3’-only No
CEL-seq2 3’-only Yes 3"-only Yes
MARS-seq 3’-only Yes 3’-only Yes
CytoSeq Pre—deir:: genes Yes 3’-only Yes
Drop-seqg/InDrop 3’-only Yes 3"-only Yes

Single-cell RNA-sequencing: The future of genome biology is now
Simone Picelli, RNA Biology, Volume 14, 2017 - Issue 5



Sensitivity of scRNA-seq methods

Comparative Analysis of Single-Cell
RNA Sequencing Methods
Ziegenhain et. al, Molecular Cell
Volume 65, Issue 4, 16 Feb 2017
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Single Cell Digital Gene Expression GENOMICS®
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Transcriptional profiling of individual cells
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profiles from every partitioned cell

https://www.10xgenomics.com/videos/training-modules/
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Libraries Compatible with [[lumina® Sequencers axawcs:

. ] L b
. ] L
P5 Read 1 UMI Poly(dT)VN Read 2 Sample

Index

Sequencing —
Read 1 Cell Barcode+UMI read 26 nt Extra cycles are unused
i7 Index Sample Index read 8 nt Extra cycles are unused
Read 2 RNA read J8nt Length may vary

(recommended)

Validated on: HiSeq 2500 (RR and HO), HiSeq 3000/4000,
NextSeq 500/550, MiSeq

https://www.10xgenomics.com/videos/training-modules/




Goals of scRNA-seq analysis methods
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Lummertz da Rocha, Nature Communications 2018
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Goals of scRNA-seq analysis methods

scRNA-seq

Cell-level analysis x’/ \- Gene-level analysis

Clustering

hddi

Clustering & Visualization

A

Cellular trajectory inference
& branching

Identifying marker genes of cell type

Gane expression

—_—

A% B GO
Cll type

Gene expression dynamics
through pseudotime analysis

Gane expression

Preudoiime

Gene-gena correlations

o &
-
;ﬁ 1 it

|

Gene regulatory network inference

.--=-"‘:':' o |
'“‘-.-L:L"_ L

¥

-/ L

I =

'..-_1__/i P

L

Computational
approaches for
interpreting scRNA-seq
data, Rostom et al. FEBS
Letters, Volume: 591,
Issue: 15.
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Adapted from

Pre-Processing

Expression Matrix
(GENES x CELLS)

Clustering

Analysis pipeline

l

1. Identify
Variable Genes

I

Filter Cells/Quality
Control

2. Dimensionality
Reduction

|

l

Normalization

https://www.broadinstitute.org/cente
r-cell-circuits-computational-genomics-

workshop

3a. Clustering

|

4a. Exploring
Known Marker
Genes

3b. Trajectory
modeling

Pseudotime analysis

)

Biology

5. Differentially
Expressed Genes

l

6. Assigning Cell
Type

l

7. Functional
Annotation

4b. Gene
expression
dynamics
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Technical challenges

e Data is noisy due to
— cDNA amplification bias
— mRNA capture efficiency

— drop outs: large number of genes with O counts
due to limiting mRNA. Zero expression doesn't
mean the gene isn’t on.

e Cells can change or die during isolation.



Experimental design

* Process your samples in a way that the condition can
not be confounded with a batch effect, like processing
date, facility, or reagents used.

— J.e. If you have to process your cells in several batches,

each batch should contain an equal number of cells from
each condition.

e |f you are comparing your data to published data you
may have to remove batch effects.
— R packages like Combat can be used for this

(https://www.rdocumentation.org/packages/sva/versions/
3.20.0/topics/ComBat)

— See “Dealing with confounders” section of the "Analysis
of single cell RNA-seq data" course (Hemberg Group).



Preprocessing for Smart-seq2

e Demultiplexing: assign all the reads with the
same cell barcode to the same cell. Done at
the sequencing facility.

 \We can check the quality of the reads with
FastQC and the library composition with FastQ
Screen as we would do with bulk RNA-seq.



Preprocessing for technologies using Unique
Molecular Identifiers (UMIs)

GEMs Cell Lysis

3-
4444% Poly(A) + RNA .
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e Demultiplexing: assign all the reads with the same
cell barcode to the same cell.

* Remove PCR duplicates: if several reads have the
same UMI and map to the same location in the

genome, keep only one.
— Cell range software for 10x data (run by the genome
technology core)
— Drop-seq tools for drop-seq and seg-well data

https://www.10xgenomics.com/videos/training—modules/16



Demultiplexing and counting 10x data

10\/

Cell Ranger™ Pipelines Wl ol vt

cellranger mkfastq  Barcode-aware demultiplexing from BCL to FASTQ,

Read-level analysis of a single library
* Transcriptome alignment with STAR
* Barcode processing
cellranger count * Gene counting
Produces gene/cell matrix
Produces expression analysis and static visualizations
Produces .cloupe file for Loupe™ Cell Browser

https://www.10xgenomics.com/videos/training-modules/ 17



CellRanger web summary

Cell Ranger
SUMMARY  ANALYSIS "
o Estimated Number of Cells Cells
2,580 o e
: Background
10k
Mean Reads per Cell Median Genes per Cell - :
97,620 2,559 g 7
8 5
1 ] g 5
E 1050
Sequencing 10
Number of Reads 251,861,835 ; | |
valid Barcodas 96.1% o1 1001000 10k 100k
Barcodes
Sequencing Saturation 78.1%
Estimated Number of Cells 2,580
Q30 Bases in Barcode 94. 7%
Fraction Reads in Cells 88.1%
Q30 Bases in RNA Read 66.6%
Mean Reads per Cell 97.620
Q30 Bases in Sample Index 87.9%
Median Genes per Cell 2,559
Q30 Bases in UMI 94 5%
Total Genes Detected 15,848
Median UMI Counts per Cell 11,729
Mapping
Reads Mapped to Genome 86.4% Samp|e
Reads Mapped Confidently to Genome 80.5%
Name L21_314
Reads Mapped Confidently to Intergenic Regions 27%
Description
Reads Mapped Confidently to Intronic Regions 6.7% )
Transcriptome mm10
Reads Mapped Confidently to Exonic Regions 71.0% .
Chemistry Single Cell 3'v2
Reads Mapped Confidently to Transcriptome 69.2%
Cell Ranger Version 211

Reads Mapped Antisense to Gene 0.8%



Demultiplexing and counting Drop-seq or
Seqg-well data

FASTQ_readl
FASTQ_read2

FASTQ

Unmapped BAM and UMI

1. Extract cell-barcode

Unmapped BAM

l 2. Map reads

Aligned
BAM

With barcode and
UMI info

3. Merge bam files

EE——

AlignedBAM with
cell barcode and
UMI info

4. Count UMls, select cell

l 3. Tag reads with gene
barcodes

Count matrix

19



Pre-Processing

Analysis pipeline

Clustering

Expression Matrix
(GENES x CELLS)

1. Identify
Variable Genes

Biology
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2. Dimensionality
Reduction
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Normalization
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4. Clustering
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7. Functional
Annotation

Adapted from
https://www.broadinstitute.org/center-cell-circuits-computational-genomics-workshop
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Quality control and filtering

e Quality control
— Number of reads per cell
— Number of genes detected per cell
— Proportion of reads mapping to mitochondrial reads
e Remove cells with poor quality
— Filter out cells with percentage of mitochondrial reads higher than a cut off

— Filter out cells with less than a lower threshold on the number of genes or
counts per cell

e Remove doublets (two cells captured with one bead in the droplet)

— Filter out cells with more than an upper threshold on the number of genes or
counts per cell in your data
— More sophisticated way of removing doublets
e https://github.com/JonathanShor/DoubletDetection
e https://github.com/AllonKleinLab/scrublet
e https://www.biorxiv.org/content/early/2018/06/20/352484

21



Normalization
Correct for sequencing depth (i.e. library size) of each
cell so we can compare across cells

. Normalize gene expression for each cell by
total expression

2. Multiply by a scale factor (i.e. 10,000).
3. Log transform the scaled counts

This is the log normalization implemented in Seurat

22



Clustering and Biology: What do you want to
learn from the experiment?

e Classify cells and discover new cell
populations

e Compare gene expression between different
cell populations

 Reconstruct developmental 'trajectories’ to
reveal cell fate decisions of distinct cell
subpopulations

23



Lots of software available to analyze single-

cell RNA-seq data

Seurat
Monocle
ScanPy
Destiny
See

https://github.com/seandavi/awesome-single-cell



Seurat
https://satijalab.org/seurat/

Seurat is an R package designed for QC, analysis,
and exploration of single cell RNA-seq data.

Developed and by the Satija Lab at the New York
Genome Center.

It is well maintained and well documented.

It has a built in function to read 10x Genomics
data.

It has implemented most of the steps needed in
common analyses.



3000
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1000

Read data and explore QC metrics plots

Read data
— Readl0X()

— read.table()
Create Seurat object: CreateSeuratObject()
Calculate the % mitochondrial genes

Plot nUMI, nGenes and % mito to decide on cut offs

nGene

10000

10X_PBMC
Identity

15000

50001 LSS

0.20

0.15

percent.mito

https://satijalab.org/se
urat/pbmc3k_tutorial.
html



Select cells, normalize and scale data.

e Filter cells based on number of genes detected and percent of
mitochondrial genes
SObj <- FilterCells(object = SObjp,
sSubset.names c("'nGene™,""percent.mito"),
low.thresholds c(4000, -InfP),
high.thresholds c(11000, 0.06))

e Normalize counts

SObj <- NormalizeData(object = SObj,
normalization.method = "LogNormalize',
scale.factor = led)

e Scaling the data and removing unwanted sources of variation

SObj <- ScaleData(object = SODbj) #just scale genes across
samples
SObj <- ScaleData(object = SObj, vars.to.regress

= c(“*batch'™))#remove cell-cell variation in gene expression driven by
the batch/day samples were processed.



Select variable genes that will be used for
dimensionality reduction

“FindVariableGenes” calculates the average expression and dispersion for
each gene, places these genes into bins, and then calculates a z-score for
dispersion within each bin. This helps control for the relationship between
variability and average expression.

pbmc <- FindVariableGenes(object = pbmc, mean.function =
ExpMean, dispersion.function = LogVMR, x.low.cutoff = 0.0125,
X.high.cutoff = 3, y.cutoff = 0.5)

length(x = pbmc@var.genes)
## gives you the number of genes selected, 1838 in this example



Principal component analysis
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Other dimensionality reduction
methods

Cells in 20000 (genes) PCA Cells in 10-50 principal
dimensional space . components space

How can we further summarize these multiple
PCAs into just 2 dimensions?

Cells in 10-50 principal ~ tSNE, UMAP, other
components space ]

Cells in 2D space



t-Distributed Stochastic Neighbor
Embedding (tSNE)

Takes a set of points in a high-dimensional space and
finds a faithful representation of those pointsin a
lower-dimensional space, typically the 2D plane.

The algorithm is non-linear and adapts to the

underlying data, performing different transformations
on different regions.

The t-SNE algorithm adapts its notion of “distance” to
regional density variations in the data set. As a result, it
naturally expands dense clusters, and contracts sparse
ones, evening out cluster sizes.

Distances between clusters might not mean anything.

https://distill.pub/2016/misread-tsne/



UMAP

Uniform manifold approximation and projection

e [tis a non linear dimensionality reduction
algorithm.

* Preserves the local structure but also the
global structure and the continuity of the cell
subsets better.

e See PMID: 30531897 for comparison of Seurat
and UMAP.



Dimensionality reduction and clustering

e Linear dimensionality reduction: PCA

pbmc <- RunPCA(object = pbmc, pc.genes = pbmc@var.genes, do.print =
TRUE, pcs.print = 1:5, genes.print = 5)

e Cluster the cells and run non-linear
dimensional reduction (tSNE)

pbmc <- FindClusters(object = pbmc, reduction.type
1:10, resolution = 0.6, print.output = 0, save.SNN

"pca', dims.use =
TRUE)

pbmc <- RunTSNE(object = pbmc, dims.use = 1:10, do.fast = TRUE)



Visualize the tSNE plot

TSNEPlot(object = pbmc)
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Differential expression and visualization

* Finding differentially expressed genes (cluster
biomarkers)

# find all markers distinguishing cluster 5 from clusters 0O and 3
cluster5.markers <- FindMarkers(object = pbmc, 1dent.1l = 5, ident.2 =
c(0, 3), min.pct = 0.25)

e Visualize DE genes
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FeaturePlot(object = pbmc, features.plot = ¢c("MS4A1", "GNLY",

VInPlot(object = pbmc, features.plot = ¢c("MS4A1", "CD79A"))
"CD14", "FCER1A"), cols.use = c("grey", "blue"),

reduction.use = "tsne")



Reconstructing 'trajectories’

Pseudotime analysis

Applicable when studying a process where cells change
continuously. For example cell differentiation during
development, or cell response to a stimulus.

Monocle
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References and resources

A practical guide to single-cell RNA-
sequencing for biomedical research and clinical applica
tions. PMID: 28821273

"Analysis of single cell RNA-seq data" course (Hemberg
Group).

Single cell RNA sequencing - NGS Analysis - NYU

2017/2018 Single Cell RNA Sequencing Analysis
Workshop (UCD,UCB,UCSF)

seandavi/awesome-single-cell
Broad Institute single cell portal
Tabula Muris (https://tabula-muris.ds.czbiohub.org/)



Exercises

e Goal:
— To walk you through an example analysis of scRNA-seq

data.

e Exploring the data
e Performing quality control
e |dentifying cell type subsets.

— To introduce you to scRNA-seq analysis using the Seurat
package.

e We will be analyzing the a dataset of Non-Small Cell
Lung Cancer Cells (NSCLC) freely available from 10X
Genomics (https://support.10xgenomics.com/single-cell-
vdj/datasets/2.2.0/vdj_v1 hs nsclc_5gex)
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