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Outline
• Overview of scRNA-seq technology, cell 

barcoding, UMIs
• Experimental design
• Typical analysis pipeline

– Preprocessing and quality control
– Normalization
– Dimensionality reduction
– Clustering of cells 
– Differential expression
– Trajectory inference 

• Integrating datasets
• Multimodal analysis 
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Why do single cell RNA-seq?
Access to expression profiles of 
individual cells allows us to: 
• Learn about cellular heterogeneity
• Discover new cell populations
• Order cells within a developmental 

trajectory
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Etzrodt, Cell Stem Cell 2014

Lummertz da Rocha, Nature Communications 2018



Exponential scaling of single-cell RNA-seq
in the past decade

4
Svensson, V., Vento-Tormo, R. & Teichmann, S.
Nat Protoc 13, 599–604 (2018). https://doi.org/10.1038/nprot.2017.149



Library preparation steps
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Comparative Analysis of Single-Cell RNA Sequencing Methods
Ziegenhain et. al, Molecular Cell
Volume 65, Issue 4, 16 February 2017, 



https://www.10xgenomics.com/videos/training-modules/
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Chromium Single Cell 3ʹ Reagent Kit

Single  Cell  3ʹ Gel  Beads 

CG000204_ChromiumNextGEMSingleCell3_v3.1_Rev_D.pdf.html
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Chromium™ Single Cell V(D)J Libraries
5’ Gene expression

Single cell 5’ Gel Bead Oligo 
primer

https://teichlab.github.io/scg_lib_structs/data/CG000109_AssayConfiguration_VDJ_RevD.pdf
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Seq-Well Second-Strand Synthesis (S3)

Second-Strand Synthesis-Based Massively Parallel scRNA-Seq 
Reveals Cellular States and Molecular Features of Human 
Inflammatory Skin Pathologies 
Immunity Vol 53, Issue 4, 13 October 2020 Hughes, 
Wadsworth, Love, Shalek et. al

https://shaleklab.com/resource/seq-well/



Important differences between technologies

• Three prime bias
– i.e. 3 prime versus 5 prime 10x genomics kits 

• Gene coverage
– i.e. Seq-Well S3 versus Seq-Well v1 and 10x 

genomics 

• Sensitivity
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Experimental design

• Process your samples in a way that the conditions can not be confounded 
with a batch effects, like processing date, facility, or reagents used.
– i.e. If you have to process your cells in several batches, each batch 

should contain an equal number of cells from each condition.
• Minimized processing time.
• For certain cell types, i.e. neurons,  other techniques like single cell nuclei 

may be more appropriate.
• Number of reads required.
• Number of cells vs. coverage for each cell.
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Current best practices in single‐cell RNA‐seq analysis: a tutorial

Mol Syst Biol, Volume: 15, Issue: 6, First published: 19 June 2019 

Typical analysis pipeline

Expression Matrix
(GENES x CELLS)

Filter Cells/Quality 
Control

Normalization

Identify Variable 
Genes

Dimensionality 
Reduction

Clustering

Exploring Known 
Marker Genes

Differential 
Expression Analysis

Assign Cell Type

Trajectory modeling and 
Gene expression 

dynamics

Compositional 
analysis



Technical challenges

• Data is noisy due to 
– cDNA amplification bias 
– mRNA capture efficiency
– Large number of genes with 0 counts due to limiting 

mRNA. Zero expression doesn't mean the gene isn’t on.

• Cells can change or die during isolation.
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Preprocessing for technologies using Unique 
Molecular Identifiers (UMIs)  

• Demultiplexing: assign all the reads with the same 
cell barcode to the same cell.

• Remove PCR duplicates: if several reads have the 
same UMI and map to the same location in the 
genome, keep only one. 
– Cell ranger software for 10x data (run by the genome 

technology core)
– Drop-seq tools for drop-seq and seq-well data 

16https://www.10xgenomics.com/videos/training-modules/



Demultiplexing and counting 10x data

17https://www.10xgenomics.com/videos/training-modules/



CellRanger web summary
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Lots of software available to analyze 
single-cell RNA-seq data

• Seurat
• Monocle
• Scanpy
• Destiny, scvelo
• See https://github.com/seandavi/awesome-single-cell
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Seurat
https://satijalab.org/seurat/

• Seurat is an R package designed for QC, analysis, 
and exploration of single cell RNA-seq data.

• Developed and by the Satija Lab at the New York 
Genome Center.

• It is well maintained and well documented.
• It has a built in function to read 10x Genomics 

data. It can de-multiplex hash tag data.
• It has implemented most of the steps needed in 

common analyses.
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Typical analysis pipeline
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Quality control and filtering
• Quality control

– Number of reads per cell
– Number of genes detected per cell
– Proportion of transcript counts deriving from the mitochondria

• Remove cells with poor quality
– Filter out cells with percentage of transcript counts deriving from the 

mitochondria higher than a cut off
– Filter out cells with less than a lower threshold on the number of genes or 

counts per cell
• Remove doublets (two cells captured with one bead in the droplet)

– Filter out cells with more than an upper threshold on the number of genes or 
counts per cell in your data

– More sophisticated way of removing doublets
• https://github.com/JonathanShor/DoubletDetection
• https://github.com/AllonKleinLab/scrublet
• DoubletFinder

https://www.sciencedirect.com/science/article/pii/S2405471219300730?via%3Dihub
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Normalization
Correct for sequencing depth (i.e. library size) of each 

cell so we can compare across cells

1. Normalize gene levels for each cell by total 
expression

2. Multiply by a scale factor (i.e. 10,000). 
3. Log transform the scaled counts

This is the log normalization implemented in Seurat
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Typical analysis pipeline
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Ringnér, M. What is principal component analysis?. Nat Biotechnol
26, 303–304 (2008). https://doi.org/10.1038/nbt0308-303

Visualization: Principal Component Analysis



Other dimensionality reduction methods
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Cells in 20000 (genes) 
dimensional space

PCA Cells in 10-50 principal 
components space

How can we further summarize these multiple 
PCAs into just 2 dimensions?

Cells in 10-50 principal 
components space

tSNE, UMAP, other
Cells in 2D space



Current best practices in single‐cell RNA‐seq analysis: a tutorial
Mol Syst Biol, Volume: 15, Issue: 6, First published: 19 June 2019

Visualization: dimensionality reduction



t-Distributed Stochastic Neighbor 
Embedding (tSNE)

• Takes a set of points in a high-dimensional space and 
finds a faithful representation of those points in a 
lower-dimensional space, typically the 2D plane. 

• The algorithm is non-linear and adapts to the 
underlying data, performing different transformations 
on different regions.

• The t-SNE algorithm adapts its notion of “distance” to 
regional density variations in the data set. As a result, it 
naturally expands dense clusters, and contracts sparse 
ones, evening out cluster sizes.

• Distances between clusters might not be biologically 
meaningful.
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https://distill.pub/2016/misread-tsne/



UMAP
Uniform manifold approximation and projection 

• It is a non linear dimensionality reduction 
algorithm.

• Preserves the local structure but also the 
global structure and the continuity of the cell 
subsets better.

• See PMID: 30531897 for comparison of tSNE
and UMAP.
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Comparison of visualization methods on 
biological datasets

Moon, K.R., van Dijk, D., Wang, Z. et al. Visualizing structure and transitions in high-
dimensional biological data. Nat Biotechnol 37, 1482–1492 (2019).
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Typical analysis pipeline
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Graph based clustering

https://biocellgen-public.svi.edu.au/mig_2019_scrnaseq-workshop/index.html

Example of communities in a graph 
Louvain algorithm Blondel et al. 
Journal of Statistical Mechanics: Theory and Experiment 2008 



Clustering and Biology: What do you want 
to learn from the experiment?

• Classify cells and discover new cell 
populations (i.e. Louvain algorithm)

• Compare gene expression between different 
cell populations

• Reconstruct developmental 'trajectories' to 
reveal cell fate decisions of distinct cell 
subpopulations
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Differential expression analysis between 
clusters

• Finds marker genes that will help determine the 
identity of the clusters.

• Since the expression data used to find the 
clusters and the markers is the same, the P‐values 
are inflated and can lead to an overestimation of 
marker genes.

• The ranking of genes based on P‐values is 
unaffected and it is a better way of selecting 
marker genes.

34



Cell type annotation

35
Pasquini et al.  Automated methods for cell type annotation on scRNA-seq 
data.  Comput Struct Biotechnol J. 2021 Jan 19. 



Cell type annotation: Azimuth
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Differential expression 
analysis between 

conditions

37

Soneson, C., Robinson, M. 
Bias, robustness and 
scalability in single-cell 
differential expression 
analysis. Nat Methods 15, 
255–261 (2018). 
https://doi.org/10.1038/nme
th.4612

Recommended: 
pseudo bulk methods

https://doi.org/10.1038/nmeth.4612


Clustering and Biology: 
What do you want to learn from the experiment?

• Classify cells and discover new cell 
populations

• Compare gene expression between different 
cell populations

• Reconstruct developmental 'trajectories' to 
reveal cell fate decisions of distinct cell 
subpopulations
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Applicable when studying a process where cells change 
continuously. For example cell differentiation during 

development, or cell response to a stimulus.
• Monocle
• TSCAN
• Slicer
• Slingshot
• Diffusion maps 
 Scanpy (python)
 destiny (R)

• PHATE

Reconstructing 'trajectories‘
Pseudotime analysis
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Integrating datasets

Dataset integration: removing batch effects
– R packages like Combat can be used for this 

(https://www.rdocumentation.org/packages/sva/versions/3.20.0/topics/Com
Bat) 

– CCA in Seurat. Cell 177, 1888-1902 (2019) Link to SOP
– Harmony. Nature Metshods 16, 1289-1296 (2019) Link to SOP
– LIGER. Nature Biotechnology 37, 1873–1887 (2019)
– CSS: cluster similarity spectrum integration. Genome Biology 21, (2020) 
– See “Dealing with confounders” section of the "Analysis of single cell RNA-seq 

data" course (Hemberg Group).
– Tran, H.T.N., Ang, K.S., Chevrier, M. et al. A benchmark of batch-effect 

correction methods for single-cell RNA sequencing data. Genome Biol 21, 12 
(2020).

– Deep learning methods: scVAEIT, scVI, totalVI, MultiVI, scVI
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The outcome of the integration varies 
depending on the method used

He, Z., Brazovskaja, A., Ebert, S. et al. CSS: cluster similarity 
spectrum integration of single-cell genomics data. Genome 
Biol 21, 224 (2020). https://doi.org/10.1186/s13059-020-
02147-4



Differences in performance of integration methods

42

Liu, Y., Wang, T., Zhou, B. et al. Robust integration of multiple single-cell 
RNA sequencing datasets using a single reference space.
Nat Biotechnol 39, 877–884 (2021).



Multimodal analysis 

43
Zhu, C., Preissl, S. & Ren, B. Single-cell multimodal omics: the 
power of many. Nat Methods 17, 11–14 (2020).



Example of multimodal analysis
Measuring transcriptomes and cell-surface proteins

• The simultaneous measurements of 
transcriptomes and cell-surface proteins from 
the same cell.

• CITE-seq : cellular indexing of transcriptomes 
and epitopes by sequencing.
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CITE-seq
Cellular indexing of transcriptomes and epitopes by sequencing

45

RNA-seq library

ADT (antibody-derived tags) 
library

Choi JR, Yong KW, Choi JY, Cowie 
AC. Single-Cell RNA Sequencing 
and Its Combination with Protein 
and DNA Analyses. Cells. 2020; 
9(5):1130.



CITE-seq
Cellular indexing of transcriptomes and epitopes by sequencing
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Cell Hashing
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Analysis Demo
• Goal:

– To walk you through an example analysis of scRNA-seq
data.

• Exploring the data
• Performing quality control
• Identifying cell type subsets

– To introduce you to scRNA-seq analysis using the Seurat 
package.

• We will be analyzing the a dataset of Non-Small Cell 
Lung Cancer Cells (NSCLC) freely available from 10X 
Genomics (https://support.10xgenomics.com/single-cell-
vdj/datasets/2.2.0/vdj_v1_hs_nsclc_5gex)

• Additionally I am providing a sample script to export the 
sum of the counts from all the cells in a cluster and a 
condition
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Helpful links
• Single cell day: https://satijalab.org/scgd23/
• https://satijalab.org/seurat/vignettes.html
• https://scrnaseq-course.cog.sanger.ac.uk/website/seurat-

chapter.html
• Analysis, visualization, and integration of spatial datasets with 

Seurat
• https://icb-scanpy.readthedocs-

hosted.com/en/stable/tutorials.html
• https://github.com/theislab/single-cell-

tutorial/blob/master/supplementary_scripts/Splatter-marker-
genes-random-data.ipynb

• https://github.com/theislab/single-cell-
tutorial/blob/master/latest_notebook/Case-study_Mouse-
intestinal-epithelium_1906.ipynb
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https://scrnaseq-course.cog.sanger.ac.uk/website/seurat-chapter.html
https://satijalab.org/seurat/articles/spatial_vignette.html
https://icb-scanpy.readthedocs-hosted.com/en/stable/tutorials.html
https://github.com/theislab/single-cell-tutorial/blob/master/supplementary_scripts/Splatter-marker-genes-random-data.ipynb
https://github.com/theislab/single-cell-tutorial/blob/master/latest_notebook/Case-study_Mouse-intestinal-epithelium_1906.ipynb


References and resources
• A practical guide to single-cell RNA-

sequencing for biomedical research and clinical applicatio
ns. PMID: 28821273 

• Current best practices in single‐cell RNA‐seq analysis: a 
tutorial. PMID: 31217225

• "Analysis of single cell RNA-seq data" course (Hemberg
Group).

• 2017/2018 Single Cell RNA Sequencing Analysis 
Workshop (UCD,UCB,UCSF)

• seandavi/awesome-single-cell
• Broad Institute single cell portal 

https://singlecell.broadinstitute.org/single_cell
• Tabula Muris https://tabula-muris.ds.czbiohub.org/)
• UCSC Cell Browser   https://cells.ucsc.edu
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https://singlecell.broadinstitute.org/single_cell
https://tabula-muris.ds.czbiohub.org/
https://cells.ucsc.edu/


Upcoming Hot Topics

April 11th

ATAC-seq analysis
April 27th

Enrichment analysis 
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http://barc.wi.mit.edu/education/hot_topics/upcoming/
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