Single-cell RNA-seq analysis

Inma Barrasa

BaRC Hot Topics – March, 29th 2022 Bioinformatics and Research Computing Whitehead Institute

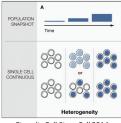
http://barc.wi.mit.edu/hot_topics/

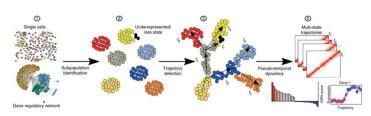
Outline

- Overview of scRNA-seq technology, cell barcoding, UMIs
- Experimental design
- Typical analysis pipeline
 - Preprocessing and quality control
 - Normalization
 - Dimensionality reduction
 - Clustering of cells
 - Differential expression

Integrated fluidic

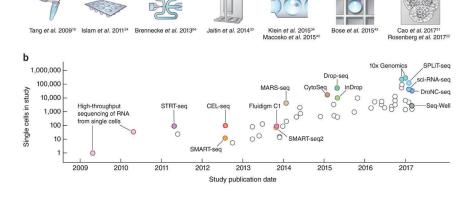
- Trajectory inference
- Integrating datasets
- Multimodal analysis




Why do single cell RNA-seq?

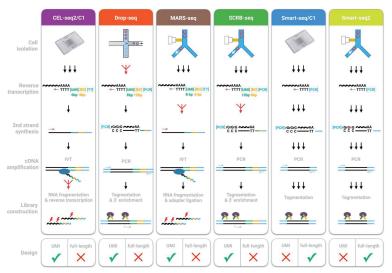
Access to expression profiles of individual cells allows us to:

- · Learn about cellular heterogeneity
- Discover new cell populations
- Order cells within a developmental trajectory

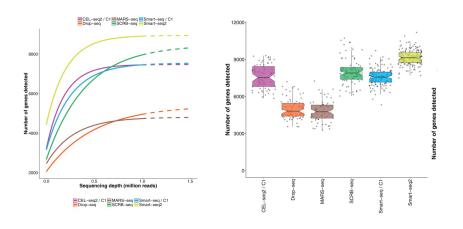

Etzrodt, Cell Stem Cell 2014

Exponential scaling of single-cell RNA-seq in the past decade

Liquid-handling

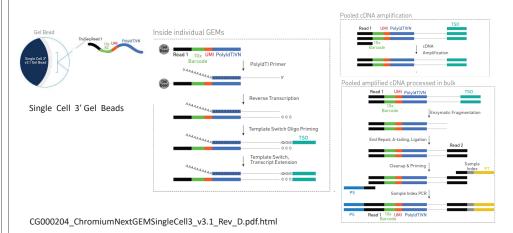


In situ barcodino


Library preparation steps

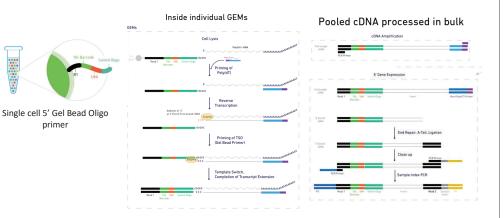
Comparative Analysis of Single-Cell RNA Sequencing Methods Ziegenhain et. al, Molecular Cell Volume 65, Issue 4, 16 February 2017,

Comparative Analysis of Single-Cell RNA Sequencing Methods Ziegenhain et. al, Molecular Cell Volume 65, Issue 4, 16 Feb 2017

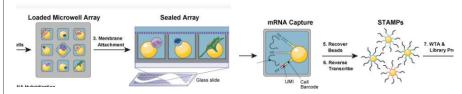


Single Cell Digital Gene Expression Remove Oil 000 10x Barcoded Cells Gel Beads Enzyme Single Cell 10x Barcoded cDNA Transcriptional profiling of individual cells • Input: Single cells in suspension + 10x Gel Beads and Reagents • Output: Digital gene expression Cell 5 000 Gene 2.000 profiles from every partitioned cell https://www.10xgenomics.com/videos/training-modules/

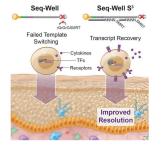
Chromium Single Cell 3' Reagent Kit



Chromium™ Single Cell V(D)J Libraries 5' Gene expression

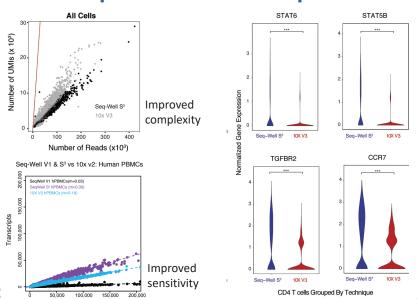


https://teichlab.github.io/scg_lib_structs/data/CG000109_AssayConfiguration_VDJ_RevD.pdf



Seq-Well Second-Strand Synthesis (S3)

https://shaleklab.com/resource/seq-well/



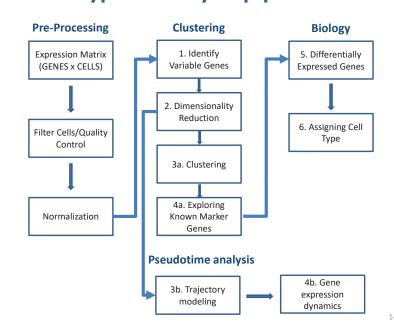
Second-Strand Synthesis-Based Massively Parallel scRNA-Seq Reveals Cellular States and Molecular Features of Human Inflammatory Skin Pathologies *Immunity Vol 53, Issue 4, 13 October 2020* Hughes, Wadsworth, Love, Shalek *et. al*

Comparison of Seq-Well S³ to other to Seq-Well v1 and 10x 3prime v2

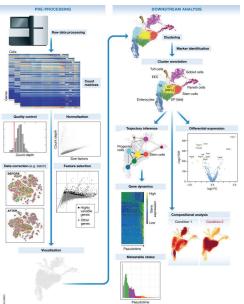
Immunity Vol 53, Issue 4, 13 October 2020 Hughes, Wadsworth, Love, Shalek et. al

- Three prime bias
 - -i.e. 3 prime versus 5 prime 10x genomics kits
- Gene coverage
 - i.e. Seq-Well S3 versus Seq-Well v1 and 10x genomics
- Sensitivity

Experimental design


- Process your samples in a way that the conditions can not be confounded with a batch effects, like processing date, facility, or reagents used.
 - i.e. If you have to process your cells in several batches, each batch should contain an equal number of cells from each condition.
- Minimized processing time.
- For certain cell types, i.e. neurons, other techniques like single cell nuclei may be more appropriate.
- Number of reads required.
- Number of cells vs. coverage for each cell.

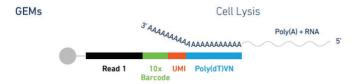
Typical analysis pipeline



Technical challenges

- Data is noisy due to
 - cDNA amplification bias
 - mRNA capture efficiency
 - Large number of genes with 0 counts due to limiting mRNA. Zero expression doesn't mean the gene isn't on.
- Cells can change or die during isolation.

Review Open Access | Published: 07 February 2020 Eleven grand challenges in single-cell data science David Lähnemann, Johannes Köster, ... Alexander Schönhuth → Show authors Genome Biology 21, Article number: 31 (2020) | Cite this article 75k Accesses | 227 Citations | 286 Altmetric | Metrics


Current best practices in single-cell RNA-seq analysis: a tutorial Mol Syst Biol, Volume: 15, Issue: 6, First published: 19 June 2019

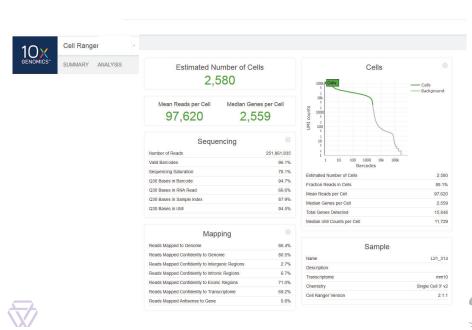
Preprocessing for technologies using Unique Molecular Identifiers (UMIs)

- Demultiplexing: assign all the reads with the same cell barcode to the same cell.
- Remove PCR duplicates: if several reads have the same UMI and map to the same location in the genome, keep only one.
 - Cell ranger software for 10x data (run by the genome technology core)
 - Drop-seq tools for drop-seq and seq-well data

https://www.10xgenomics.com/videos/training-modules/

Demultiplexing and counting 10x data

Cell Ranger™ Pipelines


Pipeline	Functionality
cellranger mkfastq	Barcode-aware demultiplexing from BCL to FASTQ
cellranger count	 Read-level analysis of a single library Transcriptome alignment with STAR Barcode processing Gene counting Produces gene/cell matrix Produces expression analysis and static visualizations Produces .cloupe file for Loupe™ Cell Browser

https://www.10xgenomics.com/videos/training-modules/ 18

CellRanger web summary

- Seurat
- Monocle
- Scanpy
- Destiny, scvelo
- See https://github.com/seandavi/awesome-single-cell

Review | Open Access | Published: 29 October 2021

Over 1000 tools reveal trends in the single-cell RNAseq analysis landscape

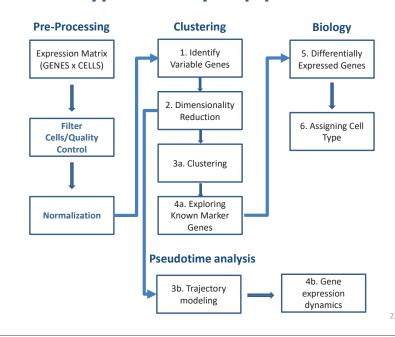
Luke Zappia & Fabian J. Theis

Genome Biology 22, Article number: 301 (2021) | Cite this article

6925 Accesses | 86 Altmetric | Metrics

Seurat

https://satijalab.org/seurat/


- Seurat is an R package designed for QC, analysis, and exploration of single cell RNA-seq data.
- Developed and by the Satija Lab at the New York Genome Center.
- It is well maintained and well documented.
- It has a built in function to read 10x Genomics data. It can de-multiplex hash tag data.
- It has implemented most of the steps needed in common analyses.

Typical analysis pipeline

Quality control and filtering

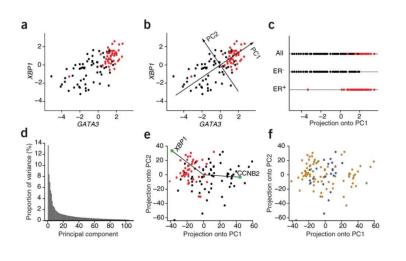
- Quality control
 - Number of reads per cell
 - Number of genes detected per cell
 - Proportion of transcript counts deriving from the mitochondria
- Remove cells with poor quality
 - Filter out cells with percentage of transcript counts deriving from the mitochondria higher than a cut off
 - Filter out cells with less than a lower threshold on the number of genes or counts per cell
- Remove doublets (two cells captured with one bead in the droplet)
 - Filter out cells with more than an upper threshold on the number of genes or counts per cell in your data
 - More sophisticated way of removing doublets
 - https://github.com/JonathanShor/DoubletDetection
 - https://github.com/AllonKleinLab/scrublet
 - https://www.sciencedirect.com/science/article/pii/S2405471219300730?via%3Dihub

Normalization

Correct for sequencing depth (i.e. library size) of each cell so we can compare across cells

- 1. Normalize gene levels for each cell by total expression
- 2. Multiply by a scale factor (i.e. 10,000).
- 3. Log transform the scaled counts

This is the log normalization implemented in Seurat

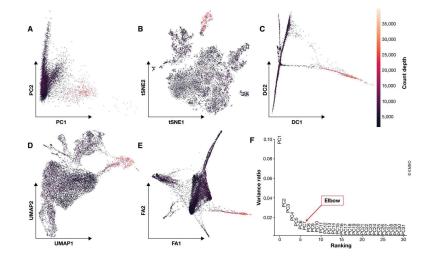




Typical analysis pipeline Biology Pre-Processing Clustering **Expression Matrix** 1. Identify 5. Differentially Variable Genes (GENES x CELLS) **Expressed Genes** 2. Dimensionality Reduction 6. Assigning Cell Filter Cells/Quality Type Control 3a. Clustering 4a. Exploring Normalization Known Marker Genes **Pseudotime analysis** 4b. Gene 3b. Trajectory expression modeling dynamics

Visualization: Principal Component Analysis

Other dimensionality reduction methods


Cells in 20000 (genes)
dimensional space

PCA
Cells in 10-50 principal
components space

How can we further summarize these multiple PCAs into just 2 dimensions?

Cells in 10-50 principal components space tSNE, UMAP, other Cells in 2D space

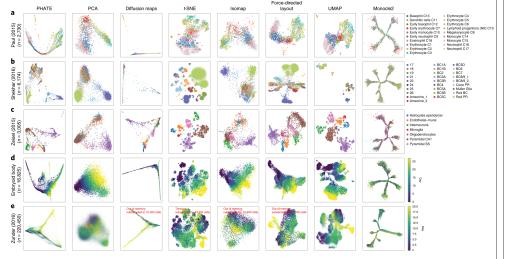
Visualization: dimensionality reduction

Current best practices in single-cell RNA-seq analysis: a tutorial Mol Syst Biol, Volume: 15, Issue: 6, First published: 19 June 2019

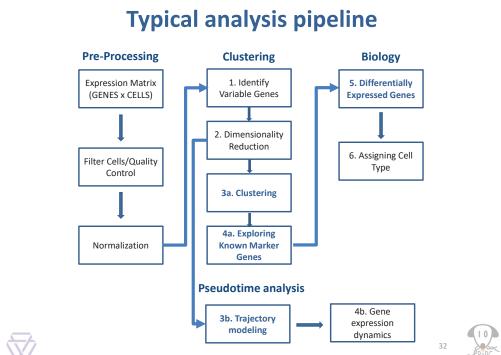
t-Distributed Stochastic Neighbor **Embedding (tSNE)**

- Takes a set of points in a high-dimensional space and finds a faithful representation of those points in a lower-dimensional space, typically the 2D plane.
- The algorithm is **non-linear** and adapts to the underlying data, performing different transformations on different regions.
- The t-SNE algorithm adapts its notion of "distance" to regional density variations in the data set. As a result, it naturally expands dense clusters, and contracts sparse ones, evening out cluster sizes.
- Distances between clusters might not be biologically meaningful.

https://distill.pub/2016/misread-tsne/


Uniform manifold approximation and projection

- It is a non linear dimensionality reduction algorithm.
- Preserves the local structure but also the global structure and the continuity of the cell subsets better.
- See PMID: 30531897 for comparison of tSNE and UMAP.



Comparison of visualization methods on biological datasets

Moon, K.R., van Dijk, D., Wang, Z. et al. Visualizing structure and transitions in high-

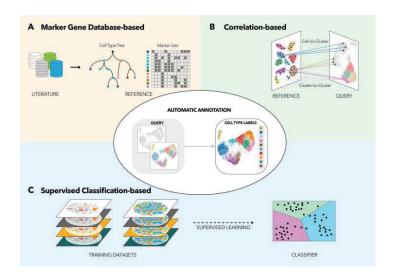
dimensional biological data. Nat Biotechnol 37, 1482-1492 (2019).

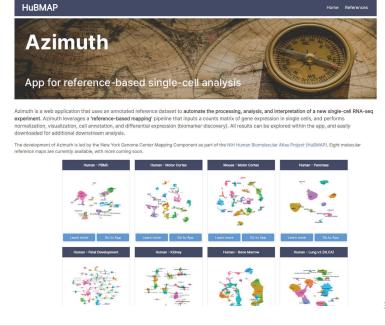
Clustering and Biology: What do you want to learn from the experiment?

- Classify cells and discover new cell populations (i.e. Louvain algorithm)
- Compare gene expression between different cell populations
- Reconstruct developmental 'trajectories' to reveal cell fate decisions of distinct cell subpopulations

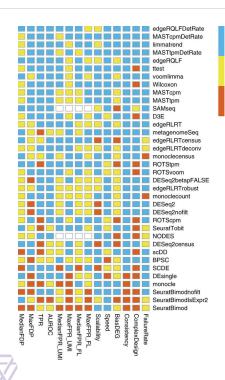
Differential expression analysis between clusters

- Finds marker genes that will help determine the identity of the clusters.
- Since the expression data used to find the clusters and the markers is the same, the P-values are inflated and can lead to an overestimation of marker genes.
- The ranking of genes based on P-values is unaffected and it is a better way of selecting marker genes.




Cell type annotation

l 0 BaRC



Cell type annotation: Azimuth

Differential expression analysis between conditions

Soneson, C., Robinson, M. Bias, robustness and scalability in single-cell differential expression analysis. Nat Methods 15, 255–261 (2018). https://doi.org/10.1038/nme th.4612

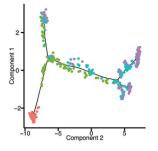
Recommended: pseudo bulk

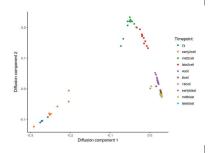
BaR

Clustering and Biology:

What do you want to learn from the experiment?

- Classify cells and discover new cell populations
- Compare gene expression between different cell populations
- Reconstruct developmental 'trajectories' to reveal cell fate decisions of distinct cell subpopulations





Reconstructing 'trajectories' Pseudotime analysis

Applicable when studying a process where cells change continuously. For example cell differentiation during development, or cell response to a stimulus.

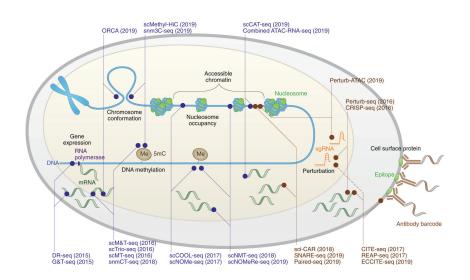
- Monocle
- TSCAN
- Slicer
- Slingshot
- Diffusion maps
- ✓ Scanpy (python)
- ✓ destiny (R)
- PHATE

Integrating datasets

Dataset integration: removing batch effects


- R packages like Combat can be used for this (https://www.rdocumentation.org/packages/sva/versions/3.20.0/topics/ComBat)
- CCA in Seurat. Cell 177, 1888-1902 (2019) Link to SOP
- Harmony. Nature Methods 16, 1289-1296 (2019) Link to SOP
- LIGER. Nature Biotechnology 37, 1873–1887 (2019)
- SAUCIE Exploring single-cell data with deep multitasking neural networks.
 Nature Methods 16, 1139–1145 (2019).
- See "Dealing with confounders" section of the "Analysis of single cell RNA-seq data" course (Hemberg Group).
- Tran, H.T.N., Ang, K.S., Chevrier, M. et al. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol 21, 12 (2020).

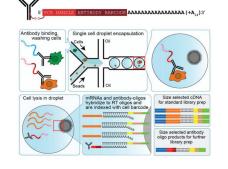
Integrating datasets



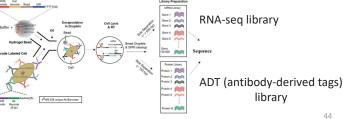
Liu, Y., Wang, T., Zhou, B. et al. Robust integration of multiple single-cell RNA sequencing datasets using a single reference space. Nat Biotechnol 39, 877-884 (2021).

Multimodal analysis

Zhu, C., Preissl, S. & Ren, B. Single-cell multimodal omics: the power of many. Nat Methods 17, 11-14 (2020).


Example of multimodal analysis

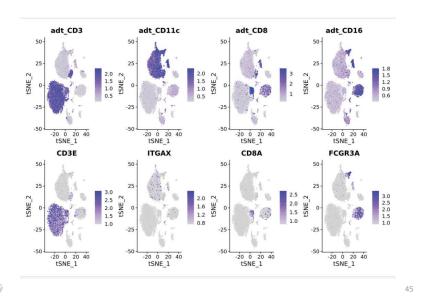
Measuring transcriptomes and cell-surface proteins

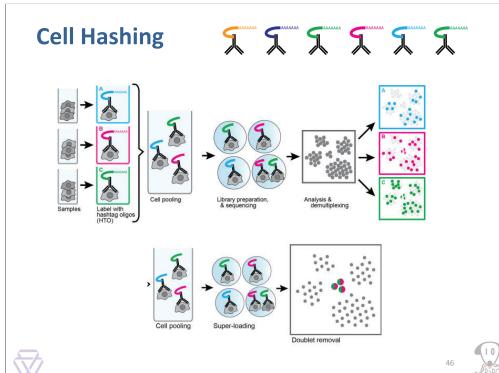

- The simultaneous measurements of transcriptomes and cell-surface proteins from the same cell.
- CITE-seq : cellular indexing of transcriptomes and epitopes by sequencing.

CITE-seq

Cellular indexing of transcriptomes and epitopes by sequencing

Choi JR, Yong KW, Choi JY, Cowie AC. Single-Cell RNA Sequencing and Its Combination with Protein and DNA Analyses. Cells. 2020; 9(5):1130.





CITE-seq

Cellular indexing of transcriptomes and epitopes by sequencing

Analysis Demo

- Goal:
 - To walk you through an example analysis of scRNA-seq data.
 - · Exploring the data
 - · Performing quality control
 - Identifying cell type subsets.
 - To introduce you to scRNA-seq analysis using the Seurat package.
- We will be analyzing the a dataset of Non-Small Cell Lung Cancer Cells (NSCLC) freely available from 10X Genomics (https://support.10xgenomics.com/single-cellvdj/datasets/2.2.0/vdj_v1_hs_nsclc_5gex)

Links to Seurat tutorials

- Single cell day LINK
- https://satijalab.org/seurat/vignettes.html
- https://scrnaseqcourse.cog.sanger.ac.uk/website/seuratchapter.html
- Analysis, visualization, and integration of spatial datasets with Seurat

Links to Scanpy tutorials

- https://icb-scanpy.readthedocshosted.com/en/stable/tutorials.html
- https://github.com/theislab/single-celltutorial/blob/master/supplementary scripts/Splatter -marker-genes-random-data.ipynb
- https://github.com/theislab/single-celltutorial/blob/master/latest notebook/Casestudy Mouse-intestinal-epithelium 1906.ipynb

- A practical guide to single-cell RNAsequencing for biomedical research and clinical applications. PMID: 28821273
- Current best practices in single-cell RNA-seq analysis: a tutorial. PMID: 31217225
- "Analysis of single cell RNA-seq data" course (Hemberg Group).
- Single cell RNA sequencing NGS Analysis NYU
- 2017/2018 Single Cell RNA Sequencing Analysis Workshop (UCD,UCB,UCSF)
- seandavi/awesome-single-cell
- Broad Institute single cell portal https://singlecell.broadinstitute.org/single_cell
- Tabula Muris https://tabula-muris.ds.czbiohub.org/)
- UCSC Cell Browser https://cells.ucsc.edu

Upcoming Hot Topics

April 7th

Genome browsers

April

Dimensionality reduction

(2 sessions)

May

ChIP-seq and ATAC-seq

Enrichment analysis

June

Clustering and heatmaps

http://barc.wi.mit.edu/education/hot_topics/upcoming/

