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Introduction Experiments Predictions Interpretation

Protein structure prediction: Nature method of 2022
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Fig. 1: The number of research papers and preprints citing the
AlphaFold2 Al software has shot up since its source code was
released in July 2021 [Callaway, 2022].
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Introduction Experiments

Protein structure informs us about function

Fig. 2: Myoglobin structure solved by X-ray crystallography, 1958. Ball and
stick model of myoglobin surrounding its heme group, vertical rods and pins
outline electron density [Kendrew et al., 1960].
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Why is predicting protein structure so difficult?

@ Levinthal’s “paradox”: Levinthal noted that the number of
configurations a protein can sample is vast (e.g. 3% for a
101 residue protein), far too many for the protein to sample
on measured folding times (e.g. seconds) [Levinthal, 1969].

@ Proteins don't need chaperones: experimental in vitro
denaturation and refolding. From such studies on ribonuclease
A, Anfinsen hypothesized that the native protein structure is
fully determined by amino acid sequence [Anfinsen, 1973].

@ Chemical kinetics help us understand the paradox: unfavorable
configurations tend to be avoided and favorable local
configurations tend to be stable [Zwanzig et al., 1992].
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Approaches to fold proteins on a computer

© Physics based [Wolynes, 2015, Shaw et al., 2010].
@ Homology modeling [Levitt, 1992, Sali and Blundell, 1993].

© Evolutionary correlations: co-evolving amino acids imply
contacts [Shindyalov et al., 1994, Morcos et al., 2011].
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Proteins fold on energy landscapes

Fig. 3: Low-dimensional visualizations of different folding
landscapes, including a Levinthal ‘golf-course” landscape (left),
idealized folding funnel (center) and rugged landscape (right)
[Dill and Chan, 1997].

Bioinformatics and Research Computing Predicting structures of protein complexes



Introduction Experiments Predictions Interpretation

Proteins can fold in computer simulations, but...

Fig. 4: Ribbon representations of an unfolded (A), partially folded (at 980
ns, B) and native (C) 36-residue villin headpiece subdomain, HP-36
[Duan and Kollman, 1998].
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Homologous protein domains can serve as templates

for predicting structure
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Fig. 5: MODELLER's [Sali and Blundell, 1993] statistical approach to
homology modeling. The unknown distance d between two atoms in residues
i and j of the query protein (Q) is described by a probability distribution
Prob(d) that is peaked around the distance dt between the corresponding
atoms in residues i’ and j' of the template protein (T)

[Meier and Séding, 2015].
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Protein structure computed from evolutionary

sequence variation
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Fig. 6: Evolutionary constraints shaping the variability between homologous
sequences: while constraints on individual residues (e.g. active sites) lead to
variable levels of amino-acid conservation, the conservation of contacts leads
to the coevolution of structurally neighboring residues and therefore to
correlations between columns in a multiple-sequence alignment of homologous
proteins[Cocco et al., 2018].
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Protein structure computed from evolutionary
sequence variation
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Fig. T: Extraction of evolutionary information about residue coupling and
predicted contacts from multiple sequence alignments works much better
using the global statistical model (direct information, DI) than the local
statistical model (mutual information, MI) [Marks et al., 2011].

Bioinformatics and Research Computing Predicting structures of protein complexes



Introduction Experiments Predictions Interpretation

AlphaFold’s deep learning architecture
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Fig. 8: Arrows show the information flow among the various algorithmic
components. Array shapes are shown in parentheses with s, number of
sequences; r, number of residues; ¢, number of channels. Compared with an
earlier deep learning architecture, “key innovations in the Evoformer block are
new mechanisms to exchange information within the MSA and pair
representations that enable direct reasoning about the spatial and

evolutionary relationships.” [Jumper et al., 2021].
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Reminder: neural network training adjusts weights

Experiments Predictions Interpretation
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Fig. 9: To generally illustrate neural network training, consider a multilayer

neural network with backpropagation [LeCun et al., 2015]. Training consists

in iterating to minimize the loss.
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Success of AlphaFold

AlphaFold Experiment
r.m.s.d. = 0.59 A within 8 A of Zn
Fig. 10: An example of a well-predicted zinc binding site. AlphaFold has
accurate side chains even though it does not explicitly predict the zinc ion
[Jumper et al., 2021].
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Assessing the quality of predicted structures

@ AlphaFold reports predicted per-residue Local Distance
Difference Test (pLDDT), based on the IDDT-C,, metric
[Mariani et al., 2013].

100 mm to 90 [ — high accuracy expected

90 @ to 70 1 — backbone expected to be modeled well

70 1 to 50 1 — low confidence, caution

50 [ to O I — should not be interpreted, may be disordered

o Predicted Alignment Error (PAE) “indicates the expected
positional error at residue x if the predicted and actual
structures are aligned on residue y". Measured in A and
capped at 31.75 A [Varadi et al., 2022].

@ Predicted TM-score is a global superposition metric that lies
between (0, 1], with better structures having higher pTM
[Zhang and Skolnick, 2004].
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Monomeric folding example: HuR
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Fig. 11: Multiple sequence alignment for human antigen R
(HuR), a post-transcriptional regulator with three RNA
recognition motifs (RRMs). The RRM sequence is clearly more
evolutionarily conserved than the linking sequences.
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Monomeric folding example: HuR

Fig. 12: Predicted structure for the human antigen R (HuR)
protein, a post-transcriptional regulator. The predicted structure
has high confidence in the three RRMs (see pLDDT, left), while
the PAE (right) indicates low confidence in their relative positions
and pTM=0.487.
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Gallery of AlphaFold structural predictions

Protein Data Bank : AlphaFold structure, with confidence
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Fig. 13: AlphaFold’s predictions of a folded protein’s structure come with
confidence estimates. Superimposing each model on the experimentally
determined structure (if available) shows the accuracy of the prediction.
[Callaway, 2022].
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Some limitations

@ Intrinsic disorder, like that seen in Fig. 13, accounts for
approximately 1/3 of the human proteome [Callaway, 2022].
Disordered domains can become structured in the presence of
other factors.

@ Because of its training, AlphaFold is not sensitive to missense
mutations that may disrupt protein structure
[Buel and Walters, 2022].

@ Sometimes predicted structures with favorable metrics turn
out to be incorrect [Callaway, 2022].

@ Domains that are predicted to be disordered may sometimes
fold using different tools (e.g. roseT TAFold
[Baek et al., 2021]).
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Application to a multimeric protein complex: actin

and profilin-1
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Fig. 14: Multiple sequence alignment of a heterodimer. Note the
species-matched alignments of orthologous proteins: amino acids
that co-evolve between the two proteins carry information about

the interface.
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Application to a multimeric protein complex:
and profilin-1

Fig. 15: Predicted structure for the human actin-PFN1 complex
closely agrees with experimental structure, Note the consistently
high pLDDT and low PAE.
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Application to a decoy multimeric protein complex:
myoglobin and HuR RRM1

200

Fig. 16: Predicted structure for a possible myoglobin-HuR
complex appears inplausible: note both the poor interfacial
pLDDT and high inter-subunit PAE.
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Ways to access AlphaFold predictions

© DeepMind/EMBL-EBI online database of predicted structures
[Varadi et al., 2022].

@ ColabFold [Mirdita et al., 2022] via ChimeraX
[Goddard et al., 2018, Pettersen et al., 2021].

© Run AlphaFold or AlphaFold Multimer at Whitehead (see
BaRC Best Practices webpage).

© Run AlphaFold at MIT (e.g. SuperCloud).
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Considerations for predicting protein complexes

@ Predicting protein complexes remains a challenge, although
AlphaFold Multimer has shown remarkable success
[Evans et al., 2022].

@ In a recent benchmark test of protein complex prediction,
AlphaFold predicted near-native structures for 43% of the
complexes, far greater than the 9% rate for unbound
protein-protein docking [Yin et al., 2022].

@ AlphaFold does poorly at predicting antigen-antibody
complexes, evidently “due to lack of coevolution signal”
[Yin et al., 2022].

Bioinformatics and Research Computing Predicting structures of protein complexes



Applications
What’s next?

e AF2Complex [Gao et al., 2022].
e ESMFold [Lin et al., 2023|.

@ Structures of protein-nucleic acid complexes
[Esmaeeli et al., 2023].

@ Screening for putative binding partners [Yu et al., 2023].
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@ AlphaFold offers predicted protein structures of unprecedented
quality and breadth, most easily accessed via the AlphaFold
Protein Structure Database.

@ AlphaFold predictions can readily be accessed using
ChimeraX, but can also be carried out at Whitehead and
elsewhere at MIT.

@ Be aware of how AlphaFold works and some of the limitations
(e.g. insensitivity to missense mutations) that implies.
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