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Protein structure prediction: Nature method of 2022

in Frankfurt, Germany, reported a model1 that 
covered about 30% of the nuclear pore com-
plex and around half of the 30 building blocks, 
called Nup proteins. 

Then, last July, London-based firm DeepMind, 
part of Alphabet — Google’s parent company — 
made public an artificial intelligence (AI) tool 
called AlphaFold2. The software could predict 
the 3D shape of proteins from their genetic 
sequence with, for the most part, pinpoint 
accuracy. This transformed Beck’s task, and 
the studies of thousands of other biologists 
(see ‘AlphaFold mania’).

“AlphaFold changes the game,” says Beck. 
“This is like an earthquake. You can see it every-
where,” says Ora Schueler-Furman, a compu-
tational structural biologist at the Hebrew 
University of Jerusalem in Israel, who is using 
AlphaFold to model protein interactions. 
“There is before July and after.”

Using AlphaFold, Beck and others at the 
MPIBP — molecular biologist Agnieszka 
Obarska-Kosinska and a group led by biophysi-
cist Gerhard Hummer — as well as a team led by 
structural modeller Jan Kosinski, at the Euro-
pean Molecular Biology Laboratory (EMBL) in 
Hamburg in Germany, could predict shapes 
for human versions of the Nup proteins more 
accurately. And by taking advantage of a tweak 
that helped AlphaFold to model how proteins 
interact, they managed to publish a model last 
October that covered 60% of the complex3. It 
reveals how the complex stabilizes holes in the 
nucleus, as well as hinting at how the complex 
controls what gets in and out. 

In the past half-year, AlphaFold mania has 
gripped the life sciences. “Every meeting I’m 
in, people are saying ‘why not use AlphaFold?’,” 
says Christine Orengo, a computational biolo-
gist at University College London.

In some cases, the AI has saved scientists 
time; in others it has made possible research 
that was previously inconceivable or wildly 
impractical. It has limitations, and some sci-
entists are finding its predictions to be too 
unreliable for their work. But the pace of 
experimentation is frenetic.

Even those who developed the software are 
struggling to keep up with its use in areas rang-
ing from drug discovery and protein design to 
the origins of complex life. “I wake up and type 
AlphaFold into Twitter,” says John Jumper, 
who leads the AlphaFold team at DeepMind. 
“It’s quite the experience to see everything.” 

A startling success
AlphaFold caused a sensation in December 
2020, when it dominated a contest called 
the Critical Assessment of Protein Structure 
Prediction, or CASP. The competition, held 
every two years, measures progress in one of 
biology’s grandest challenges: determining 
the 3D shapes of proteins from their ami-
no-acid sequence alone. Computer-software 
entries are judged against structures of the 

same proteins determined using experimen-
tal methods such as X-ray crystallography or 
cryo-electron microscopy (cryo-EM), which 
fire X-rays or electron beams at proteins to 
build up a picture of their shape.

The 2020 version of AlphaFold was the soft-
ware’s second edition. It had also won the 2018 
CASP, but its earlier efforts mostly weren’t 
good enough to stand in for experimentally 
determined structures, says Jumper. However, 
AlphaFold2’s predictions were, on average, on 
par with the empirical structures.

It wasn’t clear when DeepMind would make 
the software or its predictions widely available, 
so researchers used information from a pub-
lic talk by Jumper, and their own insights, to 
develop their own AI tool, called RoseTTAFold. 

Then on 15 July 2021, papers describing 
RoseTTAFold and AlphaFold2 appeared2,4, 
along with freely available, open-source code 
and other information needed for specialists 

to run their own versions of the tools. A week 
later, DeepMind announced that it had used 
AlphaFold to predict the structure of nearly 
every protein made by humans, as well as the 
entire ‘proteomes’ of 20 other widely stud-
ied organisms, such as mice and the bacte-
rium Escherichia coli — more than 365,000 
structures in total (see ‘What’s known about 
proteomes’). DeepMind also publicly released 
these to a database maintained by the EMBL’s 
European Bioinformatics Institute (EMBL–
EBI), in Hinxton, UK. That database has since 
swelled to almost one million structures. 

This year, DeepMind plans to release a total 
of more than 100 million structure predictions. 
That is nearly half of all known proteins — and 

hundreds of times more than the number of 
experimentally determined proteins in the 
Protein Data Bank (PDB) structure repository.

AlphaFold deploys deep-learning neu-
ral networks: computational architectures 
inspired by the brain’s neural wiring to discern 
patterns in data. It has been trained on hun-
dreds of thousands of experimentally deter-
mined protein structures and sequences in 
the PDB and other databases. Faced with a new 
sequence, it first looks for related sequences 
in databases, which can identify amino acids 
that have tended to evolve together, suggest-
ing they’re close in 3D space. The structure of 
existing related proteins provides another way 
to estimate distances between amino-acid 
pairs in the new sequence. 

AlphaFold iterates clues from these parallel 
tracks back and forth as it tries to model the 3D 
positions of amino acids, continually updat-
ing its estimate. Specialists say the software’s 
application of new ideas in machine learning 
research seems to be what makes AlphaFold 
so good — in particular, its use of an AI mech-
anism termed ‘attention’ to determine which 
amino-acid connections are most salient for 
its task at any moment.

The network’s reliance on information 
about related protein sequences means that 
AlphaFold has some limitations. It is not 
designed to predict the effect of mutations, 
such as those that cause disease, on a pro-
tein’s shape. Nor was it trained to determine 
how proteins change shape in the presence of 
other interacting proteins, or molecules such 
as drugs. But its models come with scores that 
gauge the network’s confidence in its predic-
tion for each amino-acid unit of a protein — and 
researchers are tweaking AlphaFold’s code to 
expand its capabilities.

By now, more than 400,000 people have 
used the EMBL-EBI’s AlphaFold database, 
according to DeepMind. There are also 
AlphaFold ‘power users’: researchers who’ve 
set up the software on their own servers or 

The number of research papers and preprints citing the AlphaFold2 AI software 
has shot up since its source code was released in July 2021*.

ALPHAFOLD MANIA

*Nature analysis using Dimensions database; removing duplicate preprints and papers/R. Van Noorden, E. Callaway.
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Fig. 1: The number of research papers and preprints citing the
AlphaFold2 AI software has shot up since its source code was
released in July 2021 [Callaway, 2022].
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Protein structure informs us about function

© 1960 Nature Publishing Group
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can be built, and although the 
right-handed form appears to be 
marginally the more stable, the 
difference is not so great as to make 
it certain that left-handed helices 
cannot exist. To decide this ques-
tion, it is necessary to determine 
the absolute configuration of the 
Fourier synthesis ; this function 
has no centre or plane of sym-
metry and might be plotted in 
two ways, each of which would 
be the mirror image of the other. 
The absolute configuration could 
be settled by making use of the 
anomalous dispersion of X-rays 
from the iron atoms or the intro-
duced heavy atoms; we have 
not in fact made use of this effect, 
but instead have proceeded in the 
following way. In a right-handed 
at-helix composed of L-amino-acids, 
the first atom of the side-chain (Cp) 
projects from the main chain in a 
direction opposite to the C--0 bonds 
of the carbonyl groups ; in a left-
handed helix of L-amino-acids Cp 
projects in the same direction as the 
carbonyl groups (see Fig. lb). By 
constructing a second cylindrical 
projection (not illustrated) of the 

Fig. 4. Photograph of a model of part of the molecule near the hoom group, showing 
the vertical rods and coloured clips which indicate the electron density at each point of 
the grid, and atomic models of the hoom group and neighbouring helices. The terminal 

density near a radius of 3·34 A., corresponding 
approximately to the radius at which Cp is found in 
either case, we found that Cp was systematically on 
the side of the main chain opposite the oxygen 
atoms of the carbonyl groups. This shows that the 
helix must be right-handed, and we were able to plot 
the Fourier synthesis with the c01Tect absolute con-
figuration by taking account of the known absolute 
configuration of a L-amino-acid10• The molecule was 
then found to be of the same hand as all the closely 
similar sub-units in hremoglobin, the absolute con-
figuration of which was determined by measurements 
of anomalous dispersion•. All the lengths of at-helix 
in the myoglobin molecule turn out to be right-
handed. Finally, it will be clear from Fig. 1 that it 
is possible to determine by inspection the direction 
in which the C--0 group points, and hence to see 
which is the terminal carboxyl end of each segment. 

The ex-helices can also be located by building 
atomic models into the model of the unit cell made 
with steel rods; this has been done for all the seg-
ments of helix in the molecule, and it is found that 
the total number of amino-acid residues contained in 
these segments is 100-110, whereas the number of 
residues contained in the whole molecule is believed 
to be 153 (Edmundson, A., unpublished results). 
Thus, 65--72 per cent of the molecule consists of 
regular right-handed ex-helix, made up of about eight 
segments, each containing between seven and about 
twenty residues. 

When the chain turns a corner, its regular helical 
configuration is necessarily disrupted. At the present 
resolution the precise arrangement of the residues at 
corners is difficult to determine; we have, neverthe-
less, built plausible models of several corners, though 
we do not yet claim to have established their con-
figurations with certainty. Most of the corners take 
up two or three residues, and in addition there is one 
region (on the extreme right of Fig. 5a), consisting 
of about 13-18 residues, in which the arrangement is 

carboxyl end of the chain is on the extreme left 

in·egular (part of it is helical, but probably not 
ex-helical). Further studies will be devoted to elucid-
ating these problems. 

No serious attempt has yet been made to identify 
the side-chains, and indeed it is doubtful whether 
t,his can be done systematically at the present 
resolution, partly because many of them appear to 
be subject to considerable thermal vibration, partly 
because there are often interactions between two 
side-chains on adjacent turns of the same helix or on 
adjacent helices, and it is difficult to tell where one 
ends and the other begins. In special cases, however, 
identification is easy ; thus, in several places two 
helices approach one another closely, and one or more 
side-chains must for steric reasons be glycine. On 
the other hand, some side-chains are so long that 
they can only be arginine or lysine. It remains to be 
seen how many positive identifications can be made; 
but it is clear that if the whole amino-acid sequence 
of the protein were known, it would be possible at 
this stage to construct a model of the complete 
structure with fair precision. Unfortunately, this 
information is not yet available; but in the mean-
time it may be possible to correlate and check our 
findings with the partial results of the sequence 
determination now being undertaken by Mr. A. 
Edmundson, of the Rockefeller Institute. 

The Heern Group 
The identification of a disk of high electron density 

in the 6-A. synthesis as the hrem group is confirmed 
by the 2-A. synthesis ; but the iron atom is now 
just resolved from the nitrogens of the porphyrin 
ring (the iron-nitrogen distance is about l ·9 A.) and 
the structure of the group as a whole corresponds 
closely with theoretical expectation. Fig. 2a shows 
a section through the density distribution, cut in the 
plane of the hrem group ; superposed on the section 
is a model of the hrem group with the dimensions 

Fig. 2: Myoglobin structure solved by X-ray crystallography, 1958. Ball and

stick model of myoglobin surrounding its heme group, vertical rods and pins

outline electron density [Kendrew et al., 1960].
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Why is predicting protein structure so difficult?

Levinthal’s “paradox”: Levinthal noted that the number of
configurations a protein can sample is vast (e.g. 3100 for a
101 residue protein), far too many for the protein to sample
on measured folding times (e.g. seconds) [Levinthal, 1969].

Proteins don’t need chaperones: experimental in vitro
denaturation and refolding. From such studies on ribonuclease
A, Anfinsen hypothesized that the native protein structure is
fully determined by amino acid sequence [Anfinsen, 1973].

Chemical kinetics help us understand the paradox: unfavorable
configurations tend to be avoided and favorable local
configurations tend to be stable [Zwanzig et al., 1992].

Bioinformatics and Research Computing Predicting structures of protein complexes
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Approaches to fold proteins on a computer

1 Physics based [Wolynes, 2015, Shaw et al., 2010].

2 Homology modeling [Levitt, 1992, Sali and Blundell, 1993].

3 Evolutionary correlations: co-evolving amino acids imply
contacts [Shindyalov et al., 1994, Morcos et al., 2011].

Bioinformatics and Research Computing Predicting structures of protein complexes
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Proteins fold on energy landscapes

© 1997 Nature Publishing Group  http://www.nature.com/nsmb• perspective 

N 

Fig. 1 The Levinthal 'golf-course' landscape. N is the native conforma-
tion. The chain searches for N randomly, that is, on a level playing field 
of energies. 

For example, consider the idea of a 'folding pathway'. Figs 1-3 
illustrate the conceptual difference between pathways and funnels, 
using the energy landscape metaphor. Levinthal's argument that 
random searching would not find the native states corresponds to 
the hypothetical 'flat playing field' or 'golf-course potential' 
shown in Fig. 1. When a ball rolls randomly on a flat course, it 
takes a long time to find, and fall in, the hole. From this perspec-
tive, as Levinthal notes, proteins would have a serious search 
problem. 

Fig. 2 uses the energy landscape metaphor again to show how 
Levinthal envisioned that pathways could solve the search prob-
lem of Fig. 1. Beginning from a denatured conformation A, a 
pathway embodies the idea that the folding molecule goes 
through a sort of tunnel on the landscape, like water flowing 
down a gutter, to the native structure N. This process is more 
directed than a random search. According to this idea, 'a pathway 
of folding means that there exists a well-defined sequence of 
events which follow one another'5. The gutter represents a partic-
ular series of changes in dihedral angles. It may have valleys 
(intermediate states) and/or hills (transition states) on its way to 
the native state. 

The concepts of on-pathway and off-pathway intermediates 
have their roots in images like Fig. 2, which are defined by 
whether such valleys are contained within the gutter, or outside it, 
respectively. But while the pathway idea shown in Fig. 2 handily 
'solves' the search problem embodied in Fig. 1, the physical basis 
for such specific sequences of events is unclear. Moreover, this pic-
ture creates an artificial problem, namely the Levinthal dichotomy 
of thermodynamic versus kinetic control, pathway dependence 
versus pathway-independence. The new view recognizes that the 
fundamental problem with Levinthal's solution is the concept of 
'pathway' itself. 

The Levinthal paradox is not a real problem. The 'paradox' is 
little more than a misconception about how any physical, chemi-
cal, or biological system that is governed by thermodynamics can 
reach its stable states in measurable times. Thermodynamics texts 
are full of examples of systems having nearly Avogadro's number 
of microscopic degrees of freedom that nevertheless reach stable 
states on observable time scales. The two goals of reaching a global 
energy minimum and doing so quickly are not mutually exclusive. 
The paradox is an artifact of framing the folding problem in terms 

12 

of the landscape of Fig. 1. A pathway can lead from a specific 
point A to a specific point N, as in Fig. 2. But folding a protein 
does not involve starting from one specific conformation, A. The 
denatured state of a protein is not a single point on the landscape: 
it is all the points on the landscape, except for N. A pathway is too 
limited an idea to explain the flow from everywhere else, the dena-
tured ensemble, to one point N. The concept of a pathway is use-
ful for explaining the milestones we see in travels along a road or 
along a hiking trail, but not for describing how rain flows down a 
funnel. 

The new view recognizes that the solution to Levinthal's para-
dox is 'funnels, not tunnels'55. This view has arisen from work 
on several different models. Folding landscapes do not look like 
Fig. 1. Fig. 3 shows an idealized smooth protein folding funnel 
based on an early mean-field lattice model8• Bryngelson and 
Wolynes first explored the bumpiness of protein folding land-
scapes in simplified spin-glass based models56,66. Leopold, Montal 
and Onuchic67 first described in some detail how the shape of a 
folding funnel depends on amino acid sequence, by computer 
enumeration of conformations in lattice heteropolyrner models. 
Since the lateral area of an energy landscape at a given depth rep-
resents the number of conformations ( or conformational 
entropy) having the given intrachain free energy, the funnel idea is 
simply that as a folding chain progresses toward lower intrachain 
free energies-by increasing compactness, hydrophobic core 
development, intrachain hydrogen bonding, salt-bridge forma-
tion, and so forth-the chain's conformational options become 
increasingly narrowed, ultimately toward the one native structure. 
Fig. 3 is an idealization (a landscape without features or bumps) 
showing how the many open conformations might funnel down 
through the fewer compact conformations, and finally to the one 
native conformation. 

Fig. 3 shows how funnels resolve Levinthal's paradox. We can 
draw an analogy between the denatured 'state' and an ensemble of 
skiers distributed over a mountainside. When folding conditions 
are initiated, each skier proceeds down the funnel following his 
own private trajectory. Skiers skiing down funnels reach the glob-
al minimum (satisfying Anfinsen's thermodynamic hypothesis), 
by many different routes (not a single microscopic pathway), yet 

A 

N 

Fig. 2 The 'pathway' solution to the random search problem of Fig. 1. A 
pathway is assumed to lead from a denatured conformation A to the 
native conformation N, so conformational searching is more directed 
and folding is faster than for random searching. 
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N 
Fig. 4 A rugged energy landscape with kinetic traps, energy barriers, and 
some narrow throughway paths to native. Folding can be multi-state. 

pact ensemble (skiing down to the traps) followed by slow recon-
figuration of kinetically trapped compact non-native conforma-
tions into the native structure ( uphill climbing to 'lookout points' 
and skiing down again). In these cases, the transition 'state' is the 
ensemble oflookout-point conformations that have been opened 
up and pulled apart, relative to the compact trapped states from 
which they originated58,59,74_ 

Hence the folding transition state can be many different chain 
conformations. No single mountain pass or lookout point in the 
Himalayas can be considered to be the bottleneck. From a given 
valley, a chain can break different contacts (climb different hills) 
increasing its conformational entropy, before proceeding down-
hill again. This does not necessarily imply that folding barriers are 
enthalpy-controlled in these cases, because the total experimental 
entropy includes other contributions than just chain conforma-
tional entropy. Uphill climbing does not necessarily mean a full 
opening of the chain; sometimes just a few contacts here or there 
need to be broken for the chain to resume progress toward the 
native state. 

The landscape perspective sees intermediates somewhat differ-
ently than is implied by the terms 'on-' or 'off-pathway'. Defining 
intermediates as on-pathways versus off-pathway has often been 
done based on energies, rather than on structures. That is, inter-
mediates are called off-pathway if such conformations must break 
bonds, go up hill, and thus become more unfolded in an energetic 
sense before proceeding toward the native state. But on-pathway 
versus off-pathway could also be defined in structural rather than 
energetic terms. For example, when ~-lactoglobulin, a predomi-
nantly ~-sheet protein passes through a helical state as it folds75,76, 
this is off-pathway in the structural sense that the folding ensem-
ble does not monotonically increase its resemblace to the native 
structure. 

Energy landscapes show that the question of whether a route is 
as direct as possible on a landscape is different from whether it 
involves uphills or downhills. For example, Fig. 5 shows a Moat 
Landscape, indicating a funnel-like 'throughway' path for the A 
routes and an obligatory kinetic trap for the B routes59, a splitting 
that has been referred to as 'kinetic partitioning' by Thirumalai7°. 
This may correspond to hen egg white lysozyme, studied by Chris 

14 

Dobson and his colleagues31·33, in which there is a subpopulation 
of chains that undergo overall fast folding (the A routes), and 
another subpopulation that forms the a-helical domain quickly 
but the ~-sheet domain slowly (the B routes). In classical termi-
nology, the Moat intermediate shown in Fig. 5 would be called 
off-pathway, since the chain exits the moat trap by an uphill step 
and breakage of contacts, partially denaturing before refolding. 
But in the landscape view, these traps are as direct and 'on-route' 
as is possibly achievable for that part of the chain population. 
Moreover, in the landscape picture, intermediates are 'slowing-
down places' on mountainsides-the chain gets stuck in moats, 
behind hills, lost in meadows, trapped in moguls or cul-de-sacs, 
and so forth, a much broader spectrum of options than is implied 
by the binary choice between on-pathway and off-pathway. 

Another conceptual puzzle that is readily rationalized within 
the new view regards chaperonin proteins. From a structural per-
spective, the central question of Hsp 60 chaperonin action might 
be: how can a single type of chaperonin protein, such as GroEL, 
'recognize' the transition state structures of different substrate 
proteins-rubisco, dihydrofolate reductase77,78, and others? From 
the classical perspective that emphasizes specific structures, one 
expects the folding transition states to be different from one sub-
strate protein to the next. But the landscape perspective shows 
how folding can be accelerated without 'molecular recognition'. 
To catalyse folding, a chain may merely need to be pulled apart 
nonspecifically, bringing it uphill on an energy landscape79-82. 
One way to help a skier find the lowest point on a mountain range 
is to just keep dragging him uphill, in random directions by trial 
and error, and let him ski down again. This strategy is universal 
for any protein. It doesn't depend on the shape of a mountain 
range or an energy landscape. That is, pulling apart one protein to 
let it attempt to refold is not much different than pulling apart 
another, a process that has been called 'iterative annealing'8D,81. 

Some smoother funnels describe two-state kinetics 
For fast two-state kinetics, involving no significant kinetic traps, 
the bumps and ruggedness are probably much less important 
than for multistate folding. For these cases, the mountainside is 
more like a funnel, flat at the top and steeper and deeper toward 

A 

N 
Fig. 5 Moat Landscape, to illustrate how a protein could have a fast-
folding throughway process (A), in parallel with a slow-folding process 
(Bl involving a kinetic trap. 

nature structural biology , volume 4 number t • january 1997 

Fig. 3: Low-dimensional visualizations of different folding
landscapes, including a Levinthal “golf-course” landscape (left),
idealized folding funnel (center) and rugged landscape (right)
[Dill and Chan, 1997].

Bioinformatics and Research Computing Predicting structures of protein complexes



Outline Introduction Complexes Applications Experiments Predictions Interpretation

Proteins can fold in computer simulations, but...

a closely packed hydrophobic core. In the fol-
lowing, we number the residues from 1 to 36,
where our residue 1 corresponds to residue 41
in the NMR structure. The unfolded starting
structure (Fig. 1A), which was generated from
the NMR native structure by a 1.0-ns MD
simulation at 1000 K, was in an extended state
with very few native contacts (!3%) and no
helical content.

In addition to the 1-"s simulation, a control
simulation was conducted for 100 ns at 300 K
(16), starting from the native NMR structure
(15). In this 100-ns simulation, the NH2-termi-
nal helix 1 rotated # 30° outward while main-
taining its helical structure. The COOH-termi-
nal residue Phe36, which was disordered in the
NMR structure, also exhibited large-scale
movement. Phe36 was initially in the solvent, as
found in the NMR structure. Together with
Leu35, it soon moved toward the COOH-termi-
nus of helix 1 and loosely packed against the
middle of Lys8, forming a small hydrophobic
cluster comprising Lys8, Leu35, and Phe36.
Judging from the reduction of the hydrophobic
surface, the formation of these contacts appears
energetically reasonable. The overall structure,
particularly the middle portion (helices 2 and 3)
and the hydrophobic core, remained stable in
the simulation. The average root mean square
deviation (rmsd) from the NMR structure was
1.5 Å for the main chain atoms of residues 9 to
32 in the last 50 ns of the trajectory, whereas
this rmsd varied from 3.0 to 8.8 Å during the
last 800 ns of our 1-"s folding trajectory. The
fact that the core of the native structure re-
mained near the NMR structure indicated that
our simulation protocol was adequate to study
protein folding.

In the 1-"s trajectory, the radius of gyra-
tion (R$) fluctuated (Fig. 2C) between 16 Å,
which represents extended states, and 8.7 Å,
which represents highly compact states, com-
pared with 9.4 Å of the native structure. The
main-chain rmsd (Fig. 2C) of all residues (1
to 36) varied between 12.4 and 4.5 Å; that of
the middle portion (residues 9 to 32) fluctu-
ated between 8.8 and 3.0 Å. Up to 80% of the
native helical content (Fig. 2A) and up to
62% of the native contacts (Fig. 2B) were
formed. The solvation component of the free
energy (SFE) (Fig. 2D) also reached levels
comparable to that of the native structure.
More importantly, a marginally stable state
was reached, as can be seen from the rmsd’s
and the R$, which had a residence time of
longer than 150 ns, much longer than typical
MD simulations conducted to date.

An important feature of most of the trajec-
tory is its high degree of fluctuation, exhibited
by essentially all the features measured, includ-
ing native helical content, native contacts, rmsd,
and R$ (Fig. 2). Such a large degree of fluctu-
ation is in contrast to the relatively small fluc-
tuations found during the simulation beginning
from the native structure and during the time

when the marginally stable state was reached in
the folding simulation. This high degree of
fluctuation is an indication of the rugged and
shallow free-energy landscape associated with
early stages of folding. This shallow landscape
enables the protein to search the early-stage
folding free-energy surface easily.

The folding began with a “burst” phase,
characterized by a steady rise in native helical
content (Fig. 2A) and in native contacts (Fig.
2B), and the decrease of the SFE (Fig. 2D),
which lasted from the beginning of the trajec-
tory to # 60 ns. Within this period of time, the
native helical content increased to # 60% from
an initial value of zero; meanwhile, the native
contacts increased to about 45% from an initial
value of 3%, and the SFE was reduced by
nearly 14 kcal/mol, reaching a level comparable
to that of the native structure. Analysis of the
correlations between various energy terms and
R$ indicated that the initial phase of the 300 K
simulation was driven by the burial of exposed
hydrophobic surface (13). Therefore, this phase
can be seen as an initial hydrophobic collapse.
However, given the concomitant rise of the
helical content, it appears that hydrophobic col-
lapse occurs on the same time scale as forma-
tion of some secondary structure. This makes
physical sense in that a protein, as it buries its

hydrophobic groups, tries to avoid burying its
hydrogen bonding functionalities, and second-
ary structure formation provides a way to do
this. The time required to reach 50% helical
content was about 60 ns, in excellent agreement
with recent kinetic measurements on apo-myo-
globin (48 ns) (24) and on alanine peptide (16
to 180 ns) (25). Given the diverse folding rates
observed in different sequences in experiments
(16 ns for alanine peptide and 48 ns for apo-
myoglobin, with the same method), the small
difference observed here may be the result of
sequence dependence.

Alonso and Daggett (26) showed that al-
most all nonnative conformations of ubiquitin
generated in unfolding simulations moved to
a lower R$ when the temperature was low-
ered. Their least native structure went
through two cycles of expansion and collapse
in 2 ns. Our simulations expand on these
findings by showing that cycles of expansion
and collapse can extend even into the micro-
second regime and that these expanded and
collapsed structures get more nativelike as
folding proceeds.

This burst phase was followed by a slower
adjustment phase. The slower phase started
from a sharp drop of the helical content, from
an average of more than 50% down to about

A

D E

B C

Fig. 1. Ribbon representations of (A) the unfolded, (B) partially folded (at 980 ns), and (C) native
structures, and (E) a representative structure of the most stable cluster and (D) the overlap of the
native (red) and the most stable cluster (blue) structures, generated with UCSF MidasPlus. Color
code [except (D)]: red, main chain atoms and oxygen; black, non–main chain carbon; blue,
non–main chain nitrogen; gray, hydrogen; yellow, sulfur.

R E P O R T S
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Fig. 4: Ribbon representations of an unfolded (A), partially folded (at 980

ns, B) and native (C) 36-residue villin headpiece subdomain, HP-36

[Duan and Kollman, 1998].
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Homologous protein domains can serve as templates
for predicting structure

The true distance d will be distributed around the distance dt of the equivalent atoms in the tem-
plate structure, where equivalent residues are those that are aligned to each other (Fig 1 ). MOD-
ELLER assumes for simplicity a Gaussian distribution for d. Its mean equals dt and its standard
deviation is predicted based on the sequence similarity between query and template. The
restraint minimization in the second step amounts to a maximum likelihood optimization,
where the likelihood is approximated as the product over the density functions of the individual
restraints. This factorisation of the likelihood assumes that the individual restraints represent
information independent of each other, because in probability theory the joint probability of
two random variables (X and Y) is the product of their probabilities, p(X, Y) = p(X) p(Y), if and
only if they are independent of each other. Although the assumption of independence of
restraints sounds rather drastic, the approximation turned out to work well in practice.

To aggregate the information from several templates, however, MODELLER does not multi-
ply the density functions of all restraints as probability theory would suggest. Instead, it relies
on an empirical observation that the distribution of the target distance informed by multiple
template distances is multi-modal. Thus, MODELLER reverts to a heuristic approach and com-
putes an additive mixture of the density functions, each derived from an individual template,
to restrain a single target distance based on multiple templates.

Here, we develop a rigorous statistical treatment of multiple template homology modeling.
We first show that the distance distributions for log(d) are very well described by two-compo-
nent Gaussian mixture distributions. In contrast to MODELLER’s one-component densities,
these two-component densities allow us to combine density functions by multiplication. Sec-
ond, we derive an algorithm to compute weights that take the statistical dependence of the dis-
tance information from the templates into account. Third, we propose a heuristic scheme for
template selection. We demonstrate that the new HHpred modeling pipeline and in particular
the new constraints yield substantially improved model qualities.

Fig 1. MODELLER’s statistical approach to homology modeling: The unknown distance d between
two atoms in residues i and j of the query protein (Q) is described by a probability distribution Prob(d)
that is peaked around the distance dt between the corresponding atoms in residues i0 and j0 of the
template protein (T). This distribution Prob(d) is a probabilistic distance restraint for the distance d. To model
a protein, tens to hundreds of thousands of such distance restraints between pairs of atoms in the query
protein are derived. The product of all these restraint functions, which is called the likelihood function in
statistics, quantifies how well a model structure satisfies all restraints at the same time. Therefore, the model
structure that maximises the likelihood function represents the best solution.

doi:10.1371/journal.pcbi.1004343.g001

Probabilistic Multi-template Homology Modeling

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004343 October 23, 2015 3 / 20

Fig. 5: MODELLER’s [Sali and Blundell, 1993] statistical approach to

homology modeling. The unknown distance d between two atoms in residues

i and j of the query protein (Q) is described by a probability distribution

Prob(d) that is peaked around the distance dt between the corresponding

atoms in residues i ′ and j ′ of the template protein (T)

[Meier and Söding, 2015].
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Protein structure computed from evolutionary
sequence variation

Key Issues Review

3

deletions while maintaining the independence of amino acids 
at different aligned positions.

1.2. Protein-structure prediction and the topology of coevo-
lutionary networks

The assumption of independence in profile models limits the 
amount of information that can be extracted from an MSA 
since, in practice, amino acids at different positions do not 
evolve independently. Most single-site mutations are deleteri-
ous and often perturb the physical compatibility with the sur-
rounding residues in the folded protein. One may imagine that 
compensatory mutations in neighboring sites may repair the 
damage done by the first mutation; we say that residues in 
contact coevolve [22].

Coevolution becomes visible in correlated occurrences 
of amino acids in different sites, i.e. via covariation between 
different columns of the underlying multiple-sequence align-
ment (see figure 1) [23, 24]. It is tempting to use such correla-
tions to reconstruct the contact map of a protein, which could 
then be used to predict the protein fold as a three-dimensional 
embedding of this contact map. This idea, present in the lit-
erature for more than 20 years [23, 24], did unfortunately not 
work out easily. A major reason is that correlation (as detected 
in the MSA) is not coupling (as resulting from amino acids 
in contact): if, e.g. position i is in contact with position j, and 
position j in contact with position k, we might expect an indi-
rect correlation also between i and k. The aim of the direct-
coupling analysis [25, 26], and of closely related approaches 
[27–29], is to explain correlations via a network of direct 
coevolutionary couplings, or more precisely, via a generalized 
Potts model

H(a1, ..., aL) = −
∑

1!i<j!L

Jij(ai, aj)−
L∑

i=1

hi(ai) (3)

containing both local fields h i and pairwise couplings Jij.
As will be shown below, the strongest pairwise couplings 

provide accurate predictions of contacts between residues. 
This enables protein-structure prediction without the detailed 
biophysical modeling mentioned before [30–35]. The infer-
ence of the couplings is, however, a computationally hard task, 
since the exact calculation of thermodynamic averages (which 
have to coincide with empirical ones) requires a sum over the 
exponentially large sequence space (in a disordered model 
lacking a priori any symmetry). However, any method repro-
ducing the topology of the coevolutionary network underlying 
equation (3), i.e. identifying the strongly pairs, is equally valid 
for predicting the contact map. Interestingly, pairwise Potts 
Hamiltonians were also considered years ago in the context 
of protein design, to characterize the distribution of sequences 
folding into a known structure [4, 36].

1.3. Inference of mutational landscapes and quantitative 
sequence models

Quantifying the effect of mutations is a task of outstanding 
biomedical importance and can be used as a technique for 

identifying causative mutations in genetic disease or cancer, 
or adaptive mutations leading to therapeutic drug resistance. 
In a general mathematical setting, mutational effects can be 
described by a mutational landscape, or genotype-pheno-
type mapping, which associates a quantitative phenotype 
Φ(a1, ..., aL) to each amino-acid sequence (a1, ..., aL) [37]. 
Multiple-protein alignments (of patient derived sequences or 
of homologous protein families) have been used to infer such 
landscapes from the empirically observed sequence variability 
[38–42], using in particular the analytical form of the Potts 
model equation  (3). In this context, the couplings Jij(ai, aj) 
represent so-called epistatic couplings between mutations.

To quantify the effect of the mutation from amino acid ai to 
b  in position i, we can calculate the energy difference

∆E(ai → b) = H(a1, ..., ai−1, b, ai+1, ..., aL)

−H(a1, ..., ai−1, ai, ai+1, ..., aL)
 (4)

between the mutated and the unmutated sequences. Decreasing 
energies can be interpreted as potentially beneficial muta-
tions, increasing energies as potentially deleterious mutations. 
Contrary to residue-residue contact predictions inferring the 
topology of the coevo lutionary network is not sufficient any 
more. We need a quantitative inference of the local fields and 
couplings, and expect a—possibly non-linear—correlation 
between energy differences and mutational effects.

1.4. Protein design and generative sequence models

In a seminal work, Ranganathan and coworkers [43, 44] 
suggested that the pattern of pairwise residue covariation is 
actually sufficient to generate artificial but fully functional 
protein sequences. The basic idea was to shuffle an MSA via 
a Monte Carlo procedure such that the statistics of single col-
umns (residue conservation) and column pairs (coevolution) 
remains close to unchanged. In exper imental tests, the authors 
found a substantial fraction of functional non-natural proteins, 
whereas imposing only the single-column statistics resulted in 
non-functional amino-acid sequences.

In the context of the modeling proposed here, we speculate 
therefore that the generalized Potts model equation (3) is suf-
ficient to design artificial proteins by Monte Carlo sampling, 

Figure 1. Evolutionary constraints shaping the variability between 
homologous sequences: while constraints on individual residues 
(e.g. active sites) lead to variable levels of amino-acid conservation, 
the conservation of contacts leads to the coevolution of structurally 
neighboring residues and therefore to correlations between columns 
in a multiple-sequence alignment of homologous proteins (here an 
artificial alignment is shown for illustration).

Rep. Prog. Phys. 81 (2018) 032601

Fig. 6: Evolutionary constraints shaping the variability between homologous

sequences: while constraints on individual residues (e.g. active sites) lead to

variable levels of amino-acid conservation, the conservation of contacts leads

to the coevolution of structurally neighboring residues and therefore to

correlations between columns in a multiple-sequence alignment of homologous

proteins[Cocco et al., 2018].
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Protein structure computed from evolutionary
sequence variation

increasingly difficult cases. We start with small single-domain
proteins and move on to larger, more difficult targets, eventually
covering a set of well-studied protein domains of wide-ranging
biological interest, from different fold classes. We report detailed
results for four example families, and summary results for 11
further test families, and provide detailed 3D views of all 15 test
protein families in Figure S3 and detailed 3D coordinates and
Pymol session files for interactive inspection in Appendices A3 and
A4, http://cbio.mskcc.org/foldingproteins.

Small: an RNA binding domain (RRM). The blind
prediction of the 71-residue RRM domain of the human Elav4
protein (Uniprot ID: Elav4_human) is a typical example of a
smaller protein. The distance constraints are derived from a rich
corpus of 25K example proteins in the PFAM family. The highest
ranking predicted structure has a (excellent) low 2.9 Å Ca -RMSD
deviation from the crystal structure over 67 out of 71 residues, a
TM score of 0.57 and GDT_TS 54.6, indicating overall good
structural similarity to the observed crystal structure, [53,54],
(Figure 2 top, Table 1). It has correct topography of the five b-
strands and two a-helices, marred only by a missing H-bond
pattern between strands 1 and 3, at least partly due to the
truncation of the strand 1, a consequence of the short length of the
sequence in the PFAM alignment. Strands 2 and 3 align with only
1.6 Å Ca-RMSD deviation over the length of the predicted strands
and are positioned well enough for hydrogen bonding, with some

correct registration. Interestingly, the 4th b-strand (penultimate)
missed by the secondary structure prediction method is placed in
the correct region in 3D: this is one of several examples in which
residue coupling information overrides incorrect local prediction.
The predicted top-ranked domain of Elav4 very likely lies within
the refinement basin of the native structure.

Medium size: Ras oncogene (G-domain), an a/b domain
with an GTPase active site. The G-domain family in PFAM,
with Human Ras proto-oncogene protein (Uniprot-ID:
hras_human) chosen as the protein of interest, has a core
multiple sequence alignment (MSA) of 161 residues. The
structure has an a/b fold with a 6-stranded b-sheet, surrounded
by 5 a-helices, one of which (a-2) is involved in the GTPase switch
transition after GTP hydrolysis. The highest ranked, blindly
predicted structure is 3.6 Å Ca-RMSD from the crystal structure,
over 161 residues (Figure 2 middle) and has a high TM score of 0.7
(range 0.0–1.0, with 1.0 implying 100% of residues are within a set
distance from the correct position [53]). The six b-strands and five
a-helices are placed in the correct spatial positions and are
correctly threaded (Appendices A3 and A4). The 6 b-strands,
which make 5 b-strand pairs are not within hydrogen boding
distance for all backbone bonding, but the correct register can be
easily predicted for 26/30 of the residue pairs, Text S1. The
accuracy of overall topography of the highest-ranked structures is
remarkable (Table 1) and, as far as we know, currently not

Figure 3. Progress in contact prediction using the maximum entropy method. Extraction of evolutionary information about residue
coupling and predicted contacts from multiple sequence alignments works much better using the global statistical model (right, Direct Information,
DI, Equation 3) than the local statistical model (left, Mutual Information, MI, Equation 1). Predicted contacts for DI (red lines connecting the residues
predicted to be coupled from sequence information) are better positioned in the experimentally observed structure (grey ribbon diagram), than
those for MI (left, blue lines), shown here for the RAS protein (upper) and ELAV4 protein (lower). The DI residue pairs are also more evenly distributed
along the chain and overlap more accurately with the contacts in the observed structure (red stars [predicted, grey circles [observed] in contact map;
center, upper right triangle) than those using MI (blue [predicted], grey circles [observed]; center, lower left triangle). Details of contact maps for all
proteins comparing predicted and observed contacts are in Figures S1 and S2, Text S1.
doi:10.1371/journal.pone.0028766.g003

3D Structure Computed from Sequence Alone

PLoS ONE | www.plosone.org 6 December 2011 | Volume 6 | Issue 12 | e28766

Fig. 7: Extraction of evolutionary information about residue coupling and

predicted contacts from multiple sequence alignments works much better

using the global statistical model (direct information, DI) than the local

statistical model (mutual information, MI) [Marks et al., 2011].
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AlphaFold’s deep learning architecture

Article

for the participating methods, and has long served as the gold-standard 
assessment for the accuracy of structure prediction 25,26.

In CASP14, AlphaFold structures were vastly more accurate than 
competing methods. AlphaFold structures had a median backbone 
accuracy of 0.96 Å r.m.s.d. 95 (C α  root-mean-square deviation at 95% 
residue coverage) (95% confidence interval = 0.85–1.16 Å) whereas 
the next best performing method had a median backbone accuracy 
of 2.8 Å r.m.s.d. 95 (95% confidence interval = 2.7–4.0 Å) (measured on 
CASP domains; see Fig. 1a for backbone accuracy and Supplementary 
Fig. 14 for all-atom accuracy). As a comparison point for this accuracy, 
the width of a carbon atom is approximately 1.4 Å. In addition to very 
accurate domain structures (Fig. 1b), AlphaFold is able to produce 
highly accurate side chains (Fig. 1c) when the backbone is highly accu -
rate and considerably improves over template-based methods even 

structures; in this dataset, all structures were deposited in the PDB after 
our training data cut-off and are analysed as full chains (see Methods, 
Supplementary Fig. 15 and Supplementary Table 6 for more details). 
Furthermore, we observe high side-chain accuracy when the back -
bone prediction is accurate (Fig. 2b) and we show that our confidence 
measure, the predicted local-distance difference test (pLDDT), reliably 
predicts the C α  local-distance difference test (lDDT-C α ) accuracy of the 
corresponding prediction (Fig. 2c). We also find that the global super -
position metric template modelling score (TM-score) 27 can be accu -
rately estimated (Fig. 2d). Overall, these analyses validate that the high 
accuracy and reliability of AlphaFold on CASP14 proteins also transfers 
to an uncurated collection of recent PDB submissions, as would be 
expected (see Supplementary Methods 1.15 and Supplementary Fig. 11 
for confirmation that this high accuracy extends to new folds).
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Fig. 1 | AlphaFold produces highly accurate structures.  a , The performance 
of AlphaFold on the CASP14 dataset ( n = 87 protein domains) relative to the top-
15 entries (out of 146 entries), group numbers correspond to the numbers 
assigned to entrants by CASP. Data are median and the 95% confidence interval 
of the median, estimated from 10,000 bootstrap samples. b, Our prediction of 
CASP14 target T1049 (PDB 6Y4F, blue) compared with the true (experimental) 
structure (green). Four residues in the C terminus of the crystal structure are 
B-factor outliers and are not depicted. c , CASP14 target T1056 (PDB 6YJ1).  

An example of a well-predicted zinc-binding site (AlphaFold has accurate side 
chains even though it does not explicitly predict the zinc ion). d , CASP target 
T1044 (PDB 6VR4)—a 2,180-residue single chain—was predicted with correct 
domain packing (the prediction was made after CASP using AlphaFold without 
intervention). e, Model architecture. Arrows show the information flow among 
the various components described in this paper. Array shapes are shown in 
parentheses with s, number of sequences ( Nseq  in the main text); r, number of 
residues ( Nres  in the main text); c, number of channels.

Fig. 8: Arrows show the information flow among the various algorithmic

components. Array shapes are shown in parentheses with s, number of

sequences; r , number of residues; c, number of channels. Compared with an

earlier deep learning architecture, “key innovations in the Evoformer block are

new mechanisms to exchange information within the MSA and pair

representations that enable direct reasoning about the spatial and

evolutionary relationships.” [Jumper et al., 2021].
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Reminder: neural network training adjusts weights
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Fig. 9: To generally illustrate neural network training, consider a multilayer

neural network with backpropagation [LeCun et al., 2015]. Training consists

in iterating to minimize the loss.
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Success of AlphaFold

c

AlphaFold Experiment
r.m.s.d. = 0.59 Å within 8 Å of Zn

d

Fig. 10: An example of a well-predicted zinc binding site. AlphaFold has

accurate side chains even though it does not explicitly predict the zinc ion

[Jumper et al., 2021].
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Assessing the quality of predicted structures

AlphaFold reports predicted per-residue Local Distance
Difference Test (pLDDT), based on the lDDT-Cα metric
[Mariani et al., 2013].

Predicted Alignment Error (PAE) “indicates the expected
positional error at residue x if the predicted and actual
structures are aligned on residue y”. Measured in Å and
capped at 31.75 Å [Varadi et al., 2022].

Predicted TM-score is a global superposition metric that lies
between (0, 1], with better structures having higher pTM
[Zhang and Skolnick, 2004].
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Monomeric folding example: HuR

Fig. 11: Multiple sequence alignment for human antigen R
(HuR), a post-transcriptional regulator with three RNA
recognition motifs (RRMs). The RRM sequence is clearly more
evolutionarily conserved than the linking sequences.
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Monomeric folding example: HuR

Fig. 12: Predicted structure for the human antigen R (HuR)
protein, a post-transcriptional regulator. The predicted structure
has high confidence in the three RRMs (see pLDDT, left), while
the PAE (right) indicates low confidence in their relative positions
and pTM=0.487.
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Gallery of AlphaFold structural predictions

AlphaFold will be for drug discovery.
It’s increasingly common in drug-discovery 

efforts to use computational-docking soft-
ware that screens billions of small molecules 
to find some that might bind to proteins — one 
indication that they could make useful drugs. 
Roth is now working with Brian Shoichet, a 
medicinal chemist at the University of Cali-
fornia, San Francisco, to see how AlphaFold’s 
predictions compare with experimentally 
determined structures in this exercise.

Shoichet says they are limiting their work 
to proteins for which AlphaFold’s prediction 
chimes with experimental structures. But even 
in these instances, the docking software is 
turning up different drug hits for the exper-
imental structure and AlphaFold’s take, sug-
gesting that small discrepancies could matter. 
“That doesn’t mean we won’t find new ligands, 
we’ll just find different ones,” says Shoichet. 
His team is now synthesizing potential drugs 
identified using AlphaFold structures, and 
testing their activity in the lab.

Critical optimism
Researchers at pharmaceutical companies and 
biotechnology firms are excited about Alpha-
Fold’s potential to help with drug discovery, 
says Shoichet. “Critical optimism is how I’d 
describe it.” In November 2021, DeepMind 
launched its own spin-off, Isomorphic Labs, 
which aims to apply AlphaFold and other AI 
tools to drug discovery. But the company has 
said little else about its plans.

Karen Akinsanya, who leads therapeutics 
development at Schrödinger, a drug-discov-
ery firm headquartered in New York City that 
also publishes chemical-simulations software, 
says she and her colleagues are already hav-
ing some success using AlphaFold structures, 
including for GPCRs, in virtual screens and 
compound design for drug candidates. She 
finds that, just as with experimental struc-
tures, extra software is needed to get at the fine 
details of amino-acid side chains or locations 
where individual hydrogen atoms might sit. 
Once this is done, AlphaFold structures have 
proved good enough to guide drug discovery 
— in some cases. 

“It’s hard to say ‘this is a panacea’; that 
because you can do it very well for one struc-
ture — surprisingly and excitingly well — that 
it is eminently applicable to all structures. It 
clearly isn’t,” Akinsanya says. And she and her 
colleagues have found that AlphaFold’s accu-
racy predictions don’t show whether a struc-
ture will be useful for later drug screening. 
AlphaFold structures will never fully replace 
experimental ones in drug discovery, she says. 
But they might speed up the process by com-
plementing experimental methods.

Drug developers curious about AlphaFold 
received good news in January, when Deep-
Mind lifted a key restriction on its use for 
commercial applications. When the company 

released AlphaFold’s code in July 2021, it had 
stipulated that the parameters, or weights, 
needed to run the AlphaFold neural network 
— the end result of training the network on 
hundreds of thousands of protein structures 
and sequences — were for non-commercial use 
only. Akinsanya says this was a bottleneck for 
some in industry, and there was a “wave of 
excitement” when DeepMind changed tack. 
(RoseTTAFold came with similar restrictions, 
says Ovchinnikov, one of its developers. But 
the next version will be fully open-source.) 

AI tools are not just changing how scien-
tists determine what proteins look like. Some 
researchers are using them to make entirely 
new proteins. “Deep learning is completely 
transforming the way that protein design is 
being done in my group,” says David Baker, a 
biochemist at the University of Washington 
in Seattle and a leader in the field of design-
ing proteins, as well as predicting their struc-
tures. His team, with computational chemist 
Minkyung Baek, led the work to develop 
RoseTTAFold.

Baker’s team gets AlphaFold and 
RoseTTAFold to “hallucinate” new proteins. The 
researchers have altered the AI code so that, 
given random sequences of amino acids, the 
software will optimize them until they resemble 
something that the neural networks recognize 
as a protein (see ‘Dreaming up proteins’).

In December 2021, Baker and his colleagues 
reported expressing 129 of these hallucinated 
proteins in bacteria, and found that about one-
fifth of them folded into something resem-
bling their predicted shape7. “That’s really 
the first demonstration that you can design 
proteins using these networks,” Baker says. 

His team is now using this approach to design 
proteins that do useful things, such as catalyse 
a particular chemical reaction, by specifying 
the amino acids responsible for the desired 
function and letting the AI dream up the rest.

Hacking AlphaFold
When DeepMind released its AlphaFold code, 
Ovchinnikov wanted to better understand 
how the tool worked. Within days, he and 
computational-biology colleagues, including 
Steinegger, set up a website called ColabFold 
that allowed anyone to submit a protein 
sequence to AlphaFold or RoseTTAFold and 
get a structure prediction. Ovchinnikov 
imagined that he and other scientists would 
use ColabFold to try and ‘break’ AlphaFold, 
for instance, by supplying false information 
about a target protein sequence’s evolutionary 
relatives. By doing this, Ovchinnikov hoped he 
could determine how the network had learnt 
to predict structures so well. 

As it turned out, most researchers who 
used ColabFold just wanted to get a protein 
structure. But others used it as a platform to 
modify the inputs to AlphaFold to tackle new 
applications. “I didn’t expect the number of 
hacks of various types,” says Jumper.

By far the most popular hack has been to 
wield the tool on protein complexes com-
prised of multiple, interacting — and often 
intertwined — chains of peptides. Just as with 
the nuclear pore complex, many proteins in 
cells gain their function when they form com-
plexes with multiple protein subunits.

AlphaFold was designed to predict the 
shape of single peptide chains, and its train-
ing consisted entirely of such proteins. But the 

AlphaFold’s predictions of a folded protein’s structure come with confidence estimates. Superimposing each 
model on the experimentally determined structure (if available) shows the accuracy of the prediction. 

THE GOOD, THE BAD AND THE UGLY

Protein Data Bank
(PDB) structure

AlphaFold structure, with confidence
estimates for each section.

AlphaFold model of 
phosphohistidine 
phosphatase overlaps 
closely with PDB structure.

AlphaFold model of 
human insulin bears 
no relation to the PDB 
structure.

AlphaFold has little confidence across 
much of its prediction for this human 
ubiquitin-protein ligase. There is no 
PDB structure to compare it with.
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Fig. 13: AlphaFold’s predictions of a folded protein’s structure come with

confidence estimates. Superimposing each model on the experimentally

determined structure (if available) shows the accuracy of the prediction.

[Callaway, 2022].
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Some limitations

Intrinsic disorder, like that seen in Fig. 13, accounts for
approximately 1/3 of the human proteome [Callaway, 2022].
Disordered domains can become structured in the presence of
other factors.

Because of its training, AlphaFold is not sensitive to missense
mutations that may disrupt protein structure
[Buel and Walters, 2022].

Sometimes predicted structures with favorable metrics turn
out to be incorrect [Callaway, 2022].

Domains that are predicted to be disordered may sometimes
fold using different tools (e.g. roseTTAFold
[Baek et al., 2021]).
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Application to a multimeric protein complex: actin
and profilin-1

Fig. 14: Multiple sequence alignment of a heterodimer. Note the
species-matched alignments of orthologous proteins: amino acids
that co-evolve between the two proteins carry information about
the interface.
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Application to a multimeric protein complex: actin
and profilin-1

Fig. 15: Predicted structure for the human actin-PFN1 complex
closely agrees with experimental structure, Note the consistently
high pLDDT and low PAE.
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Application to a decoy multimeric protein complex:
myoglobin and HuR RRM1

Fig. 16: Predicted structure for a possible myoglobin-HuR
complex appears inplausible: note both the poor interfacial
pLDDT and high inter-subunit PAE.
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Ways to access AlphaFold predictions

1 DeepMind/EMBL-EBI online database of predicted structures
[Varadi et al., 2022].

2 ColabFold [Mirdita et al., 2022] via ChimeraX
[Goddard et al., 2018, Pettersen et al., 2021].

3 Run AlphaFold or AlphaFold Multimer at Whitehead (see
BaRC Best Practices webpage).

4 Run AlphaFold at MIT (e.g. SuperCloud).
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Considerations for predicting protein complexes

Predicting protein complexes remains a challenge, although
AlphaFold Multimer has shown remarkable success
[Evans et al., 2022].

In a recent benchmark test of protein complex prediction,
AlphaFold predicted near-native structures for 43% of the
complexes, far greater than the 9% rate for unbound
protein-protein docking [Yin et al., 2022].

AlphaFold does poorly at predicting antigen-antibody
complexes, evidently “due to lack of coevolution signal”
[Yin et al., 2022].
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What’s next?

AF2Complex [Gao et al., 2022].

ESMFold [Lin et al., 2023].

Structures of protein-nucleic acid complexes
[Esmaeeli et al., 2023].

Screening for putative binding partners [Yu et al., 2023].

...
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Summary

AlphaFold offers predicted protein structures of unprecedented
quality and breadth, most easily accessed via the AlphaFold
Protein Structure Database.

AlphaFold predictions can readily be accessed using
ChimeraX, but can also be carried out at Whitehead and
elsewhere at MIT.

Be aware of how AlphaFold works and some of the limitations
(e.g. insensitivity to missense mutations) that implies.
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