Statistical Analysis in MATLAB

Hot Topic – 18 Jan 2006 Sanjeev Pillai BARC

MATLAB – Basic Facts

- MATrix LABoratory
- Standard scientific computing software
- Interactive or programmatic
- Wide range of applications
- Bioinformatics and Statistical toolboxes
- Product of MathWorks (Natick, MA)
- Available at WIBR (~20 licenses now)

M

Basic operations

- Primary data structure is a matrix
- To create a matrix

```
a = [1 \ 2 \ 3 \ 4] % creates a row vector b = 1:4 % creates a row vector c = pi:-0.5:0 % creates a row vector d = [1 \ 2;4 \ 5;7 \ 8] % creates a 3x2 matrix
```

Operations on matrices

```
a+c % adds 'a' and 'c' to itself if dimensions agree
d' % transposes d into a 2x3 matrix
size(d) % gives the dimensions of 'd'
x*y % multiplies 'x' with 'y' following matrix rules
x .* y % element by element multiplication
```


Basic operations

- Accessing matrix values
 - □ d(3,2) % retrieves the 3rd rw, 2nd cl element of d
 - \Box d(3,:) % all elements of the 3rd row
 - □ d(:,2) % all elements of the 2nd column
 - □ d(1:2,2)% 1st to 2nd row, 2nd column
- Assigning values to matrix elements
 - \Box d(1,1)=3;

- % assigns 3 to (r1,c1)
- 3rd
- \square d([1 2],:)=d([3 3],:) % change the first 2 rows to the
- □ d=d^2

% squares all values in d

Basic operations

Strings

- Row vectors that can be concatenated
- $\square x = 'Matlab'$
- □ y = 'class'
- \Box z = [x ' 'y] % z gets 'Matlab class'

Useful functions

- □ doc, help % for help with various matlab functions
- whos % Lists all the variables in current workspace
- □ clear % clears all variables in the current workspace

Read/Write Data (File I/O)

- Several data formats supported
 - □ text, xls, csv, jpg, wav, avi etc.
- From the prompt or using 'Data Import'
- Read into variables in the workspace
 - □[V1 V2 V3..] = textread('filename',' format')
 - eg. [l,o] = textread('energy.txt','%f%f','delimiter',',','headerlines', 1,'emptyvalue',NaN);
- Treated as regular matlab variables
- Write out into files
 - fid=fopen('en.txt', 'w');
 - fprintf(fid, '%f\t%f\n',[lean;obese]);
 - fclose(fid);
 - number = number

Basic Statistics in Matlab

- mean(lean) % calculates the mean
- median(lean)
- std(obese(finite(obese))) % ignores the NaNs
- Visualize data
 - boxplot([lean,obese],'labels',{'Lean','Obese'})
 - □ Select variables from workspace
 - □ Use the plotting tool from the interface

Hypothesis testing

- One sample z-test
 - Done to test a sample statistic against an expected value (population parameter)
 - □ Done when the population sd is known
 - □ ztest(vector,mean,sd);
 - □ [h,p,ci,zscore]=ztest(vector,mean,sigma,alpha,tail)
- One sample t-test
 - □ Done when the population sd is not known.
 - [h,p,ci,tscore]=ttest(vector,mean,alpha,tail)

Two-sample tests

- Paired samples
 - □ Data points match each other
 - ☐ Eg. before/after drug treatment
 - □ [h,p,ci,stats]=ttest(d1,d2,alpha)
- Independent samples
 - Data points not related
 - ☐ Eg. Data from 2 groups of people
 - □ [h,p,ci,stats]=ttest2(d1,d2,alpha)

Test for assumptions

- Data is normally distributed
 - □ Paired: Delta is normally distributed
 - Independent: Both data sets are normal
 - □ normplot(var) or qqplot(var) or qqplot(v1,v2)
- Data is homogenous (equal variances)
 - □ F-test
 - □ Tests whether the ratio of the variances is 1.
 - □ [h,p,ci,stats]=vartest2(g1,g2,0.01)

Non-parametric tests

- Data need not be normal
- Compare ranks instead of values
- By ranking the signs or sums
- Wilcoxon signed rank test (one sample or paired samples)
 - □ [p,h,stats]=signrank(var1,var2)
- Wilcoxon rank sum test (Independent samples)
 - □ [p,h,stats]=ranksum(var1,var2)

Multiple hypothesis correction

- Applied when a test is done several times
 - □ Significance occurs just by chance
 - □ Eg. Microarray analysis (wild type vs mutant)
- Bonferroni correction
 - Multiply raw p-value with the number of repetitions
 - ☐ for i=1:number_of_reps
 - calculate p-value for each
 - correct each p-value
 - store in a data structure
 - □ end

M

Comparing proportions

- Analyze proportions instead of values
- Chi-square test
 - □ No single command in matlab
 - \square x= [matrix of contingency table];
 - \Box e= sum(x')'*sum(x)/sum(sum(x));
 - \square X2=(x-e).^2./e
 - \square X2=sum(sum(X2))
 - \Box df=prod(size(x)-[1,1])
 - \square P=1-chi2cdf(X2,df)

M

Some more tests

- Enrichment analysis
 - □ Is the given data enriched for a category?
 - □ Used widely in biological data analysis
 - ☐ Hypergeometric probability analysis
 - \blacksquare Y = hygecdf(X,M,K,N);

Correlation

- Identify correlation between paired values
- □ From -1 to +1: perfect +ve and inverse correlations
 - $\blacksquare [R,P] = corrcoef(x,y);$

Matlab resources

- Online help
 - http://www.mathworks.com/access/helpdesk/help/helpdesk.shtml
- Open source user community
 - Someone may have already done what you need
 - □ http://www.mathworks.com/matlabcentral/
- Topics not covered
 - □ Scripts and functions
 - □ Complex data structures
 - Programming