
U i P l d P hUnix, Perl and Python
Perl for Bioinformatics

George W. Bell, Ph.D.
WIBR Bioinformatics and Research Computing

http://jura.wi.mit.edu/bio/education/hot_topics/Unix_Perl_Python/

Perl for Bioinformatics

• Introduction
D t t• Data types

• Input and outputp p
• Functions

C l• Control structures
• Comparisonsp
• Sample script

2

Objectivesj

• write, modify, and run simple Perl scripts

• design customized and streamlined data
manipulation and analysis pipelines with
Perl scriptsp

3

Why Perl?y

• Good for text processing
(sequences and data)(sequences and data)

• Easy to learn and quick to write
• Built from good parts of lots of languages/tools
• Lots of bioinformatics tools available• Lots of bioinformatics tools available
• Open source and free for Unix, Windows, and

Mac

4

A first Perl programp g
• Create this program and call it hey.plCreate this program and call it hey.pl
#!/usr/local/bin/perl –w
The Perl "Hey" program# The Perl Hey program
print "What is your name? ";
chomp ($name = <STDIN>);chomp ($name = <STDIN>);
print "Hey, $name, welcome to the

\BaRC course.\n";
• To run: perl hey.pl or
• To run: chmod +x hey.pl

./hey.pl

5

Scalar data
• Describe one thing
• Start with $
• Can be numbers or text (a “string”)
• Strings need single or double quotes

$numSeq = 5; # number; no quotes
$seqName = "GAL4"; # “string”; use quotes
$l l 3 75 # b b d i l t$level = -3.75; # numbers can be decimals too
print "The level of $seqName is $level\n";

• Perl has some strange-looking “special variables” too:
$_ default input variable

6

_
$. input line number

Arrayy
• An ordered list of scalar variables
• The entire list is indicated by a @

@genes ("BMP2" "GATA 2" "Fez1");@genes = ("BMP2", "GATA-2", "Fez1");

@orfLengths = (395, 475, 431);
@info = (12, "student", 5.0e-05, "comic books");@info (12, student , 5.0e 05, comic books);

• One item of the list is accessed like $foo[2]$ []
• The first item is actually the 0th item

print "The ORF of $genes[0] is $orfLengths[0] nt ";print "The ORF of $genes[0] is $orfLengths[0] nt.";

Prints out: The ORF of BMP2 is 395 nt.

7

Hash

A d d i (“k ” d “ l ”) f li t• An unordered pair (“keys” and “values”) of lists
• Each key points to a corresponding value.

Th ti li t i i di t d b %• The entire list is indicated by a %

%geneToLength = (); # Create an empty hash

• An item of the hash is accessed like $foo{key}

$geneToLength{"BMP2"} = 395;
$gene = "BMP2";
i t " h O f $ i $ th{$ } t "print "The ORF of $gene is $geneToLength{$gene} nt.";

• Prints out: The ORF of BMP2 is 395 ntPrints out: The ORF of BMP2 is 395 nt.

8

Perl input and outputp p

• Types of input:
keyboard (STDIN)– keyboard (STDIN)

– files
• Types of output:

– screen (STDOUT)screen (STDOUT)
– files

U i di i b h l f l• Unix redirection can be very helpful
ex: ./hey.pl > hey output.txt

9

y p y_ p

Filehandles
To read from or write to a file in Perl, it first needs to be opened.
In general, open(filehandle, filename);

Filehandles can serve at least three purposes:Filehandles can serve at least three purposes:
open(IN, $inFile); # Open for input
open(OUT, ">$outFile"); # Open for output p (, $); # p p
open(OUT, ">>$outFile"); # Open for appending

Then get data all at once @lines = <IN>;Then, get data all at once @lines = <IN>;
or one line at a time
while (<IN>) {while (<IN>) {

$line = $_; do stuff with this line;
i t OUT "Thi li $li " }

10

print OUT "This line: $line"; }

Perl functions – a samplep

print opendir closedir open close

chomp mkdir split join diechomp mkdir split join die

length chdir readdir chmod sortg

substr push unlink rename use

m// s/// tr/// lc uc

slides exercisesDescription of command:
11

slides exercisesDescription of command:

Control Structures 1
if (condition) # note that 0, “”, and (undefined) are false
{

print "If statement is true";
}}
else # optional; ‘if’ can be used alone; elsif also possible
{{

print "If statement is false";
}

if ($exp >= 2) # gene is up-regulatedif ($exp > 2) # gene is up regulated
{
print "The gene $seq is up-regulated ($exp)";

}

12

}

Control Structures 2
while (condition)
{

print "condition is true";
Do interesting things...

}

open(DATA, "myData.txt"); # Open a file to read
while (<DATA>)while (<DATA>)
{

Split by tabs and make an array# p y y
@dataThisRow = split /\t/, $_;
Print first field followed by "\n" (line end)

13
print "$dataThisRow[0]\n";

}

Control Structures 3

(i i i li i)for (initialize; test; increment)
{

Do something interesting with this value# Do something interesting with this value

}

Go through an array (@seqs) where
$#seqs = index of the last element in @seqs# $# q @ q

for ($i = 0; $i <= $#seqs; $i++)
{ # Print elements of @seqs and @orf on a line

print "$seqs[$i]\t";
print "$orf[$i]\n";

14

print "$orf[$i]\n";
}

Arithmetic & numeric comparisonsp

A ith ti t / * %• Arithmetic operators: + - / * %
• Notation: $i = $i + 1; $i += 1; $i++;
• Comparisons: > < < > !• Comparisons: > , < , <= , >= , = = , !=

if ($num1 != $num2) # If these are differentif ($num1 != $num2) # If these are different
{

print "$num1 and $num2 are different";print $num1 and $num2 are different ;
}

• Note that = = is very different from =
= = used as a test: if ($num = = 50)

15
= used to assign a variable: $num = 50

String comparisonsg p

• Choices: eq (equals), ne (not equal to)

if ($gene1 ne $gene2)
{{

print "$gene1 and $gene2 are different";
}}
else
{

print "$gene1 and $gene2 are the same";

16
}

Multiple comparisonsp p

• AND &&
• OR ||• OR ||

if (($exp > 2) || ($exp > 1.5 && $numExp > 10))
{

print "Gene $gene is up regulated"print "Gene $gene is up-regulated";
}

17

Embedding shell commandsg

• use backquotes (`) around shell command
• example using EMBOSS to reverse-complement:p g p
`revseq mySeq.fa mySeq_rc.fa`;

• Capture stdout from shell command if desired
• EMBOSS qualifier “ filter” prints to stdout• EMBOSS qualifier -filter prints to stdout

$date = `date`;
$rev comp = `revseq mySeq.fa -filter`;$ _c p q y q a ;
print $date;
print "Reverse complement:\n$rev_comp\n";

18

Perl modules

• "a unit of software reuse"• a unit of software reuse
• adds a collection of commands related to a specific task
• see https://tak wi mit edu/trac/wiki/Perl to find Perl• see https://tak.wi.mit.edu/trac/wiki/Perl to find Perl

modules installed on tak
• BioPerl is a collection of bioinformatics tasksBioPerl is a collection of bioinformatics tasks
• Example of a descriptive statistics module:

use Statistics::Lite qw(:all);
@nums = (324, 456, 876, 678, 654, 789);
$mean = mean(@nums);
print "The mean of my numbers is $mean\n";

19

Programming issuesg g

• What should the program do? What does it do?
• Who will be using/updating your software?Who will be using/updating your software?

– Reusability
C i– Commenting

– Error checking
• Development vs. execution time

D b i t l i ti d ti• Debugging tools: printing and commenting
• Beware of OBOBs ("off-by-one bugs")

20

(y g)

Example: align_pairs.plp g _p p

#!/usr/local/bin/perl –w#!/usr/local/bin/perl –w
Automatically do lots of pairwise sequence alignments
$seqs = $ARGV[0]; # Get first argument (word after command)
$hs = "human"; # directory with human proteinsy p
$mm = "mouse"; # directory with mouse proteins
open(SEQ_LIST, $seqs); # Open file for reading
while(<SEQ_LIST>) # Read one line at a time
{{

$seq = chomp($_); # trim end-of-line character
print STDERR "Aligning $seqFile…\n";
Create EMBOSS command for S-W (optimal) alignment(p) g
$CMD = "water $hs/$seq $mm/$seq –outfile $seq.aligned";
Execute the command (needs EMBOSS package)
`$CMD`;

} BMP7}
print "All done with alignments\n";

BMP7
GATA4
LIN28A

Example
file

21
To run: ./align_pairs.pl SeqList.txt

Summaryy

I /• Input/output
• Variables (scalars and arrays)(y)
• Functions (brief look)
• Control structures
• ComparisonsComparisons
• Sample script: align_pairs.pl

22

Books with more information

• O’Reilly books at http://proquest.safaribooksonline.com/search/perl
– Thanks to the MIT LibrariesThanks to the MIT Libraries
– Learning Perl (Schwartz et al.)
– Programming Perl (Wall, Christiansen, and Orwant)

• Beginning Perl for Bioinformatics – Tisdall

• ‘Using Perl to Facilitate Biological Analysis’ (Stein) in Bioinformatics
(Baxevanis & Ouellette)

• ‘Bioinformatics Programming using Perl and Perl Modules’ in
Bi i f i S d G A l i 2 d d (M)Bioinformatics: Sequence and Genome Analysis, 2nd ed. (Mount)

AND several good web sites (see course page)

23

g (p g)

Demo scripts:
htt ://i i mit d /bi /bi i f /s i ts/http://iona.wi.mit.edu/bio/bioinfo/scripts/

and /nfs/BaRC_Public/BaRC_code/

24

Exercises

• Parsing a SAM short-read alignment file
into a BED file

• Retrieving and aligning a list of human-
h lmouse orthologs

25

