
Unix, Perl, and Python

Session 2: Perl for Bioinformatics

Exercise 1: Converting a SAM short-read alignment file into a BED file

Goal: Read through a SAM file and create a BED file that is much smaller (since it includes less
information).

The script you’ll write will take as input a sorted SAM alignment file that was created by an
unspliced alignment tool like bowtie (such as part of a ChIP-Seq experiment). A SAM file is a
tab-delimited text file that shows information such as the short read sequence, the genome region
to which it maps, and even details about where any mismatches occur. You may be able to
figure out most of the fields in the file, but the complete file format is described here:
http://samtools.sourceforge.net/SAM1.pdf (in section 1.4). The file often starts with a header
that describes the length of each chromosome in the genome. Some SAM files also include
unmapped reads, but this one only includes those mapped to the mouse genome.

See http://jura.wi.mit.edu/bio/education/hot_topics/Unix_Perl_Python/
for the course page

This exercise will exclusively use Perl commands (rather than some Unix commands such as in
exercise 2). When you’re finished, you can upload your BED file to the Mouse July 2007 UCSC
genome browser (http://genome.ucsc.edu/cgi-bin/hgGateway?db=mm9).

To do:

1 Log onto tak, which should take you to your home directory.

2 Create a directory (if you haven’t already) called perl_class and enter it.

3 Copy starting script and data file from /nfs/BaRC_Public/Unix_Perl_Python/Perl/
to your current directory.
 script = SAMtoBED.pl
 data file = Mouse_mm9_reads.sam

4 Check permissions of script and change to executable if necessary.
 chmod +x SAMtoBED.pl

5 Open SAMtoBED.pl with pico (command line), nedit (Xwindows), or another text
editor.

It may be helpful to look at Mouse_mm9_reads.sam too (using a text editor or the
more command). This SAM file is just the top piece of a complete file that could be 5 G
or more (so normally you can’t open the whole thing).

6 Under the line “# 0”:
Print an error message if the user forgets the name of the sam file, which should be the
first argument ($ARGV[0]).

7 Run the script, check the output, and debug:
./SAMtoBED.pl

8 Under line “# 1” is an “if” command.
Do you have any idea of what this expression means?
Hints: It has something to do with the SAM header, and ^ is a special character that, in
this context, refers to the beginning of a line.

Answer: It’s a regular expression that says to enter the loop only if the line does not begin
with a @ (which means to skip the header lines)

9 Under line “# 2”:
Use the tabs "\t" to split the line into fields, and place these fields into an array called
@data
A command like this appears in the class slides.

10 Under line “# 3”:
Get the starting position of the mapped read in
Field 4 ($data[3]) is the start position of the mapped read (where the first base of a
chromosome is 1). We want to create a BED file but BED format counts the first base of
a chromosome as 0, so we need to subtract 1 from the SAM coordinate.

11 Under line “# 4”:
You have the starting coordinate of the read. To get the “end” coordinate, you need to
know the read length, which you can get from the length command applied to the short
read (field 10). Call the length, $length.

12 Under line “# 5”:
Calculate the “end” coordinate (from $start and $length) and call it $end.

13 Under line “# 6”:

As a first step, convert each row into a BED-format row (called $bedRow) with the
following tab-delimited fields:
chr start end
The chr is found in field 3 and you’ve already calculated $start and $end.

Print $bedRow

14 Under line “#7 [Optional]”:
Add fields for read name, score, and strand.

To create $name, use the first field or the file row (a special Perl character: $.).

To create $score (between 0 and 1000), just choose your favorite number or use the
number of mismatches to create a scoring scheme. The last digit of the last field
($data[13]) contains the number of mismatches:
$numMismatches = substr ($data[13], -1, 1);

To get $strand, this information is encoded in field 2 ($data[1]). If field 2 is 0, it's +; if
field 2 is 16, it's -.

Create a new expanded $bedRow or add to the previous $bedRow with a command
like
$bedRow .=

Print $bedRow

15 One possible solution (a completed script) is in
/nfs/BaRC_Public/Unix_Perl_Python/Perl/solutions/

