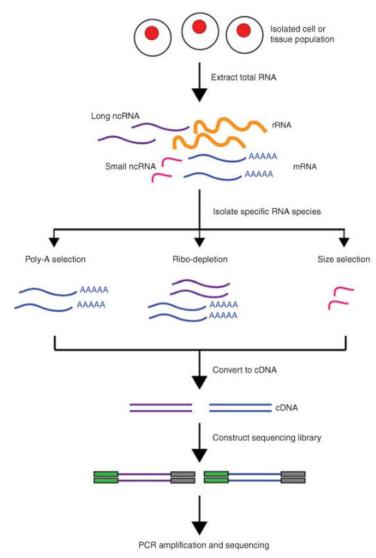
Practical RNA-seq analysis

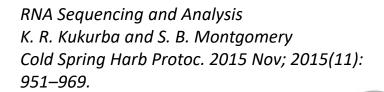
George W. Bell et al.

Bioinformatics and Research Computing (BaRC) http://barc.wi.mit.edu/hot_topics/

16 February 2023

Overview of RNA-seq sample prep

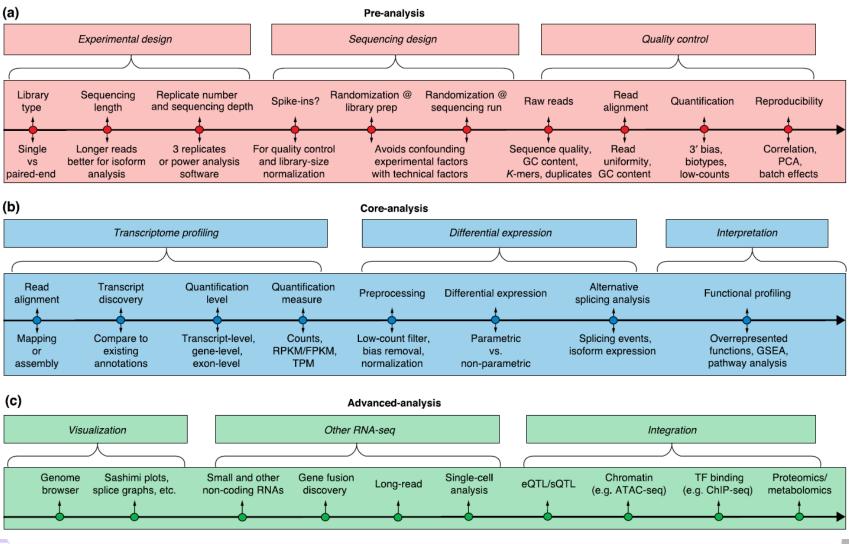




Why do RNA-seq?

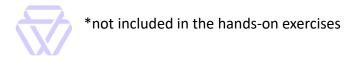
- RNA-seq includes experiments to
 - Profile abundance of mRNA and other RNAs
 - Identify "differentially expressed" genes
 - Identify alternated spliced transcript isoforms
 - Assemble transcriptomes
 - Identify variants in transcribed regions of a genome
 - Identify novel genes

RNA-seq Analysis Overview



Outline

- Experimental design*
- Quality control
- Sequence preparation*
- Mapping spliced reads
- Counting gene levels
- Normalization and identifying "differentially expressed" genes
- Creating figures and summaries



Hands-on exercises

- All data is in /nfs/BaRC_Public/Hot_Topics/RNA-seq_2023
- Create directories on fry
- Link to data files on BaRC_Public
- See handout for series of commands (step 0)
- Commands can be copied from file

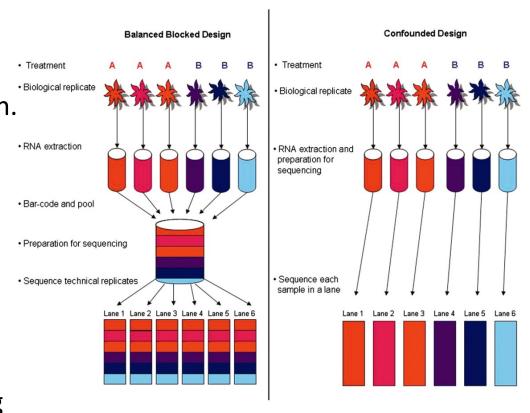
RNA-seq_2023_commands.txt

Experimental Design

- Replication is essential if results with confidence are desired.
- With the combination of high numbers of reads per sample and multiplexing, the number of Illumina lanes can be much fewer than number of samples.
- Lots of details to think about:
 - Has someone already done an experiment like this?
 - Total RNA or poly(A) RNA or ...
 - Number of samples?
 - Read length?
 - Paired or unpaired reads?
 - Stranded or unstranded?
 - Number of reads?
 - What reference genome to use?
 - What reference transcriptome to use?

Experimental Design

- Lots of data typically cannot make up for a poor experimental design.
- Look out for bias and confounding.
- Short-read sequencing requires an effectively designed experiment.
- See BaRC about reducing batch effects



QC before alignment

FastQC, use multiQC to view

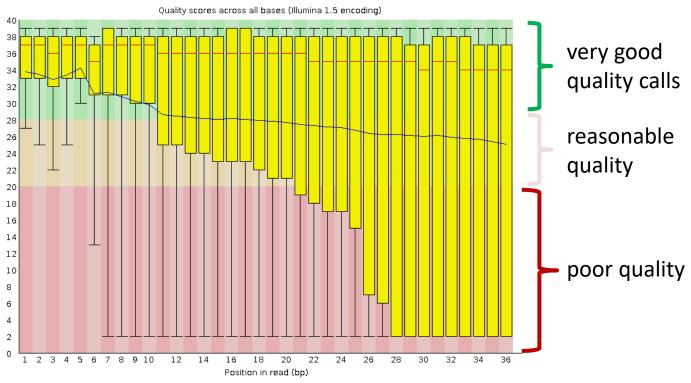
- Check quality of file of raw reads (fastqc_report.html)
- Respond to QC analysis?
 - Filter poor-quality reads
 - Trim poor-quality positions
 - Trim adapter and/or other vector
- Check quality of file of modified reads
- See Hot Topics on quality control Jan 2017
- See handout for fastqc command (step 1)
- FastQ Screen (quick mapping to multiple genomes) can identify other problems

@WIGTC-HISEQ3:1:1212:18183:1997#TTAGGC/1 NCCACAACAGGGCACGGTGCGGAATAGAGAACTATCCCTT +WIGTC-HISEQ3:1:1212:18183:1997#TTAGGC/1 B[[[[aeaeeaeeeeeeeeeeeeeeeeeeeeeeeeeee

Measure	Value						
Filename	NA07357_CEU_1.fastq						
File type	Conventional base calls						
Encoding	Sanger / Illumina 1.9						
Total Sequences	7940176						
Filtered Sequences	0						
Sequence length	37						
%GC	56						

Per base sequence quality

FastQC: per base sequence quality



Red: median blue: mean yellow: 25%, 75% whiskers: 10%, 90%

Quality = 10 => error rate = 10% => base call has 90% confidence

Quality = 20 => error rate = 1% => base call has 99% confidence

Quality = 30 => error rate = 0.1% => base call has 99.9% confidence

Responding to quality issues

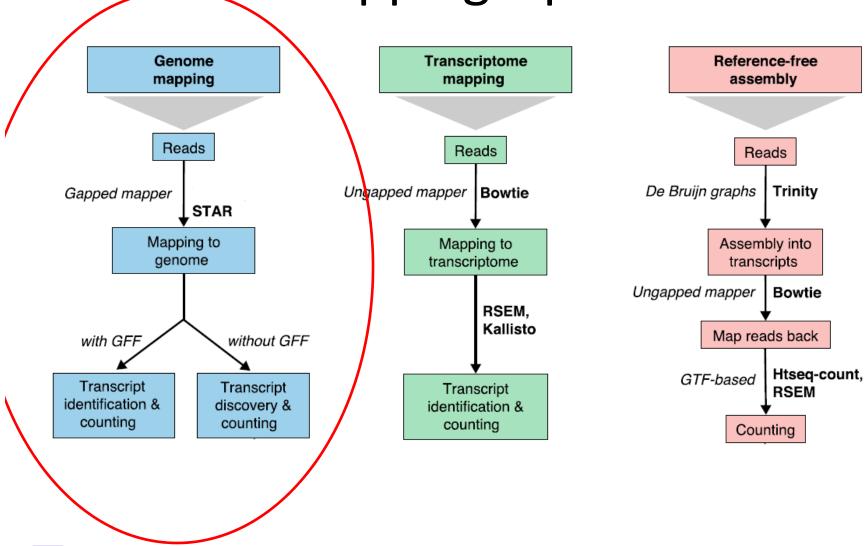
Method 1:

- Drop all poor-quality reads
- Trim poor-quality bases
- Map only good-quality bases

Method 2:

- Keep all reads as is
- Map as many as possible
- Current mappers incorporate the read quality score into the mapping quality score

Mapping Options



RNA-seq genome mapping

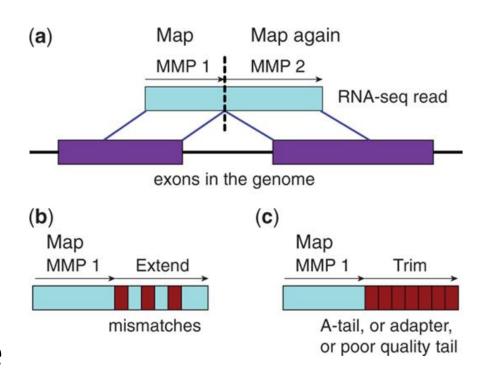
- Reads can be mapped with a splice-aware alignment tool such as STAR (recommended)
- The ideal tool should map to best hit(s), whether to continuous or spliced genome segments
- Look at alignment statistics and mapped reads in a browser (and re-map if needed).
- Mappers can read much smaller fastq.gz files (in addition to fastq files).

Mapping considerations

- Type of quality score encoding.
- Use all contigs or just canonical chromosomes?
- Include known splice junctions (in GTF file).
- Do you want to look for novel splice junctions?
- How short of a sub-read should map to an exon boundary?
- How long are your introns? Specifying maximum intron length can reduce erroneous mapping.

STAR aligner

- I. Sequential search for Maximal Mappable Prefix (MMP)
- II. Stitch together all the seeds that were aligned to the genome from I)



Alignment with STAR

- Create genome index using *genomeGenerate*, also see /nfs/genomes
- Sample alignment command syntax
 STAR --genomeDir /path/to/GenomeDir --readFilesIn /path/to/read1.fq.gz /path/to/read2.fq.gz --outFileNamePrefix whateverPrefix --runThreadN 8 --readFilesCommand zcat --outSAMtype BAM SortedByCoordinate

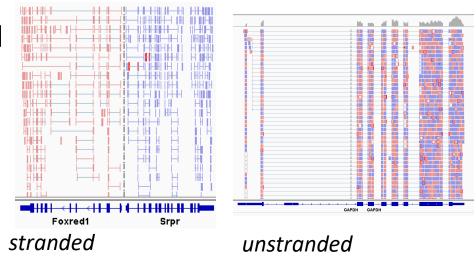
runMode <alignreads, genomegenerate=""></alignreads,>	"alignReads" does the actual mapping. "genomeGenerate" generates the genomeDir required for mapping (default = alignReads).
genomeDir 	Specifies the path to the directory used for storing the genome information created in the genomeGenerate step.
readFilesIn <read1.fastq read2.fastq></read1.fastq 	Specifies the fastq files containing the reads, can be single-end or paired-end.
runThreadN <n></n>	Specifies the number of threads to use.
readFilesCommand <cmd></cmd>	Specifies the command to uncompress compressed fastq files. For gzipped files (*.gz) usereadFilesCommand zcat.
outSAMtype <bam sortingMode></bam 	Specifies the type of BAM file to create. Options: 'BAM Unsorted', 'BAM SortedByCoordinate', 'BAM Unsorted SortedByCoordinate' (to create both unsorted and sorted BAMs)

Hands-on exercises

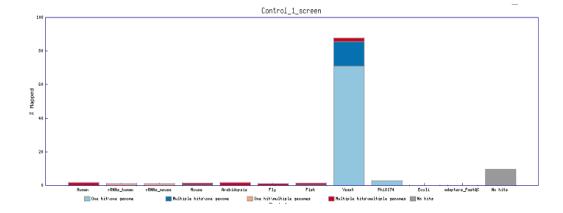
- How does "gene expression" (really: transcript levels) differ between double knockout and WT samples?
- Experiment is from Cangelosi et al., 2022.
 Zonated leucine sensing by Sestrin-mTORC1 in the liver controls the response to dietary leucine.
- Sample sequences are 75x75 paired-end reads
 - Double knock-out samples (Sestrin1 and Sestrin2, n=3)
 - WT samples (n=3)
- Each file of our sample data contains 5M reads (about 10% of total reads)

QC after alignment

- Confirm that reads are stranded or unstranded
 - Run infer_experiment.py (from RSeQC package)
 - Look at BAM reads in genome browser
 - For paired reads, select
 - "View as pairs"
 - "Color alignments by" => first-of-pair strand

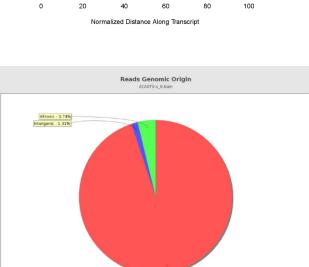


- Contamination?
 - FastQ Screen

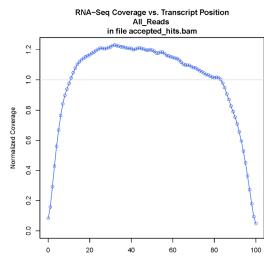


QC after alignment (optional)

- Do reads cover the length of a typical transcript, or is there 3' or 5' bias?
 - Run **Picard** tool:CollectRnaSeqMetrics
- What fraction of reads map to annotated exons?
 - Run 'qualimap rnaseq'
- See BaRC SOPs for commands



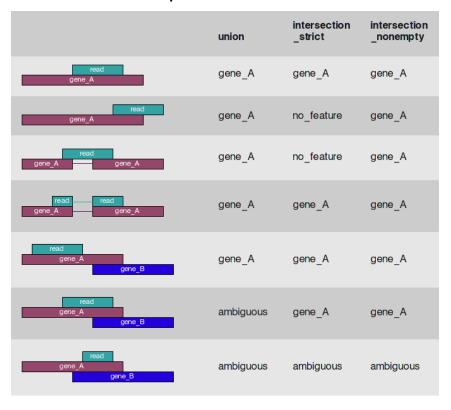
See handout for BAM commands (steps 3 - 6)



Counting RNA-seq features

- What features are of interest? Gene, transcript, and/or exon counts?
- How do we want to treat a read maps to multiple places?
- What happens if a read overlaps with multiple features?
- Does the direction of a read need to agree with the direction of the feature? Is RNA stranded, reversed strand or unstranded?

htseq-count "modes"



Counting methods

featureCounts (recommended)

bioinf.wehi.edu.au/featureCounts/

Output is raw counts

htseq-count

htseq.readthedocs.io/en/master/count.html

Output is raw counts

Bedtools (intersectBed; coverageBed)

bedtools.readthedocs.io/

Output is raw counts (but may need post-processing)

Running featureCounts

Count reads mapping to the specified gene models:

Usage:

```
featureCounts [options] -a <annotation_file> -o
<output_file> input_file1 [input_file2] ...
```

Example:

```
# single-end reads (unstranded)
featureCounts -a gene_anotations.gtf -o
MySample.featureCounts.txt MySample.bam
# paired-end reads (reverse stranded)
featureCounts -p -s 2 -a gene_anotations.gtf -o
MySample.featureCounts.txt MySample.sorted.bam
```


Running featureCounts: Options

Option	Description
minOverlap	Minimum number of overlapping bases in a read that is required for read assignment. 1 by default.
fracOverlap	Minimum fraction of overlapping bases in a read that is required for read assignment.
-M	Multi-mapping reads will also be counted.
-0	Assign reads to all their overlapping meta-features (or features if -f is specified).
fraction	Assign fractional counts to features.
-S	Perform strand-specific read counting. Acceptable values: 0 (unstranded), 1 (stranded) and 2 (reversely stranded). 0 by default.

Count normalization

- Raw counts cannot be compared directly
- Correct for sequencing depth (i.e., library size)
 - DESeq2: standard median ratio
 - CPM: counts per million
 - FPKM*: fragments per kilobase per million mapped reads
 - TPM*: transcripts per million
- It's easy to convert from raw counts to other metrics – see BaRC for details

Preferred normalization method:

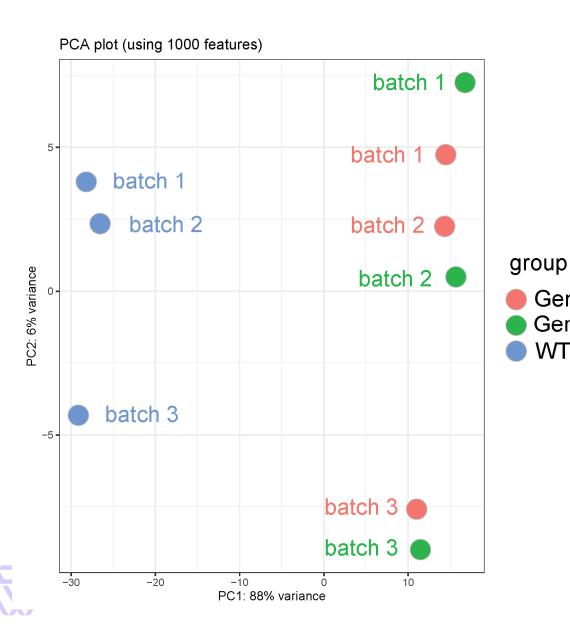
median of ratios, implemented in DESeq2

- 1. Construct a "reference sample" by taking, for each gene, the geometric mean of the counts in all samples.
- 2. Calculate for each gene the quotient of the counts in your sample divided by the counts of the reference sample.
- 3. Take the median of all the quotients to get the relative depth of each library and use it as the "size factor".

$$\boldsymbol{x_i} / \left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}}$$

	Sample 1	Sample 2	Sample 3	Sample 4				
Gene 1	2135 (447)	615 <mark>(586)</mark>	128 <mark>(346)</mark>	161 (288)				
Gene 2	600	58	103	189				
Gene 3	3150	1346	68	88				
Gene 4	378	187	11	22				
<pre>> cds = estimateSizeFactors(cds) > sizeFactors(cds)</pre>								
Sample 1 4.7772242	Sample 2 Sample 3 Sample 4 1.0490870 0.3697529 0.5590669							

Using PCA to explore your data



Are there "batch effects" (technical differences that may bias biological differences)?

GeneA.KO GeneB.KO

WT

Talk to BaRC about adjusting for batch effects.

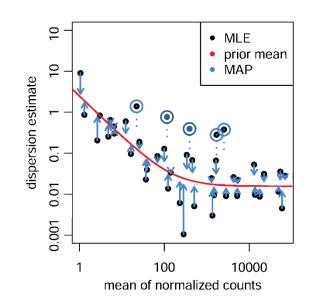
Differential expression methods

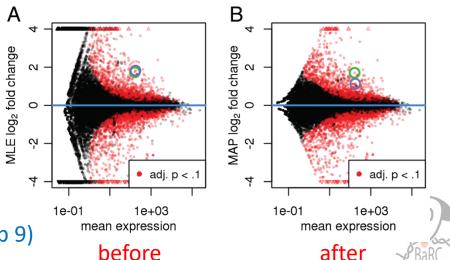
- Count-based methods (recommended)
 - Input is matrix of raw counts
 - DESeq2 (R package) -- recommended
 - edgeR (R package)
 - Typically used to compare gene counts
- Accounting for experimental design, including batch effects
 - DESeq2: dds = DESeqDataSet(se, design = ~ batch + condition)
 - edgeR: design = model.matrix(~Batch+Treatment)

See http://barcwiki.wi.mit.edu/wiki/SOPs/rna-seq-diff-expressions

DESeq2 differential expression statistical considerations

- Given that most RNA-seq experiments have a small sample size, measured gene variation is not accurate
 - Solution: shrink variation towards mean of genes with a similar level
- Given that genes with lower expression appear to be the "noisier", we want to reduce their log2 fold changes to more realistic values
 - Solution: Apply log2 fold change shrinkage (3 available methods)





Interpreting DESeq2 output

Gene ID (from GTF file)	Mean norm counts	Log2 (fold change)	logFC std error	Wald statistic	Raw p-value	FDR p-value	Raw counts			Normalized counts = raw / (size factor)				
Feature.ID	baseMea n	log2(YRI/ CEU)	lfcSE	stat	pvalue	padj		CEU_N A11881	YRI_NA18 502	YRI_NA1 9200	_	_	_	YRI_NA1 9200.nor m
ENSG00000251705	114.15	-3.48	0.46	-7.60	2.90E-14	4.48E-11	197	250	8	14	172.84	257.56	5.77	20.42
ENSG00000236552	66.39	-3.86	0.52	-7.47	8.29E-14	1.07E-10	180	96	. 2	5	157.93	98.9	1.44	7.29
ENSG00000226958	2073.59	-2.45	0.38	-6.52	6.88E-11	7.58E-08	3324	4148	407	556	2916.4 2	4273.49	293.32	811.14
ENSG00000064886	54.20	3.31	0.54	6.09	1.11E-09	1.05E-06	9	1	. 84			1.03		147.35
ENSG00000198786	2006.17	-1.95	0.32	-6.08	1.23E-09	1.05E-06	4601	2391	. 834	633	4036.8 4	2463.33	601.05	923.47
ENSG00000100292	58.87	-2.86	0.47	-6.04	1.54E-09	1.19E-06	131	98	13	7	114.94	100.96	9.37	10.21

sizeFactors (from DESeq2):

Differential expression issues

- Given that statistics are
 - based on complex models
 - influenced by even more complex biology

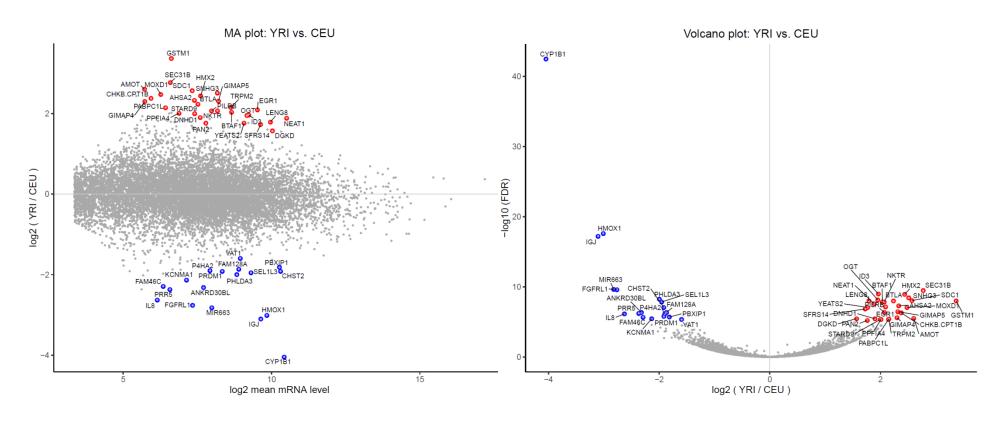
The p-values may not be accurate but can be very effective at ranking genes

- Statistics don't work very well when one sample has no counts.
- You have to choose appropriate threshold(s) and make your definition of "differentially expressed" clear to your audience. This generally includes a FDR threshold and can also include a log2 fold change threshold.

Presenting results

- What do you want to show?
- All-gene scatterplots can be helpful to
 - See level and fold-change ranges
 - Identify sensible thresholds
 - Hint at data or analysis problems
- Heatmaps are useful if many conditions are being compared but only for subsets of genes
- Output normalized read counts with same method used for DE statistics
- Whenever one gene is especially important, look at the mapped reads in a genome browser (like IGV)

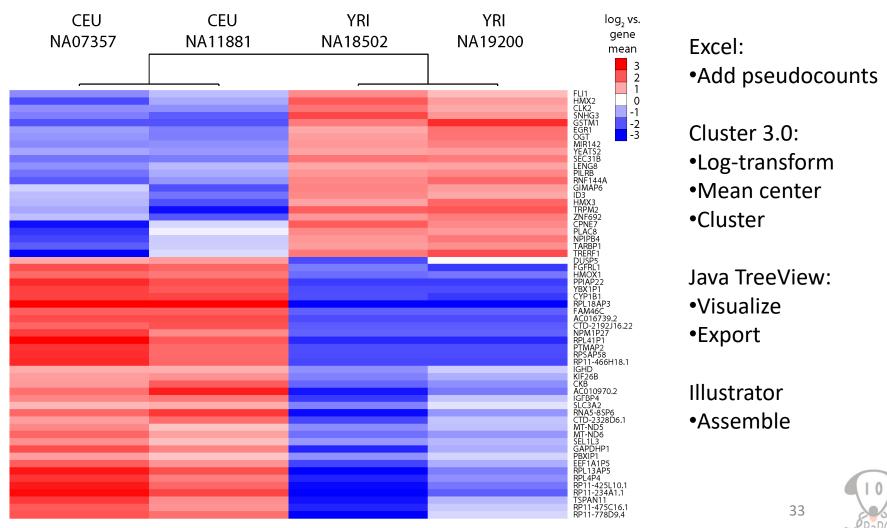
MA (ratio-intensity) and volcano plots



MA (ratio-intensity) plot

Volcano plot

Sample heatmap example: genes with FDR < 0.2



Heatmap software

- Microsoft Excel
 - Create matrix of log2 ratios
 - Home => Conditional Formatting => Color Scales
- Cluster 3.0 + Java TreeView
 - http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm
- Morpheus
 - https://software.broadinstitute.org/morpheus/
- R/Bioconductor
 - See BaRC R scripts such as

```
/nfs/BaRC_Public/BaRC_code/R/drawHeatmap/drawHeatmap.R /nfs/BaRC_Public/BaRC_code/R/cluster_draw_pheatmap/cluster_draw_pheatmap.R
```


Public RNA-seq datasets

- NCBI GEO (Gene Expression Omnibus)
- EBI ArrayExpress
- Broad Institute (CCLE, GTEx)
- ENCODE
- TCGA (The Cancer Genome Atlas)
- Recount2
- /nfs/BaRC_datasets

Always expect batch effects due to sample prep and/or processing differences.

Summary

- Optimize your experimental design
- Run quality control (such as FastQC) on reads before and after mapping
- Do additional sequence preprocessing if needed
- Map spliced reads with STAR
- Count gene levels with featureCounts
- Normalize and identify "differentially expressed" genes with the DESeq2 R package
- Creating lots of figures and summaries
- Inspect raw data of at least your important genes
- Save your commands to make everything reproducible!

Resources

- Previous Hot Topics (http://barc.wi.mit.edu/education/hot_topics/)
- An introduction to R and Bioconductor: A BaRC Short Course
- BaRC Best Practices (http://barcwiki.wi.mit.edu/wiki/SOPs)
- Online software manuals
 - STAR, featureCounts, DESeq2, etc.
- Genome index and GTF files are in /nfs/genomes
- Various datasets: /nfs/BaRC_datasets
- Lots of BaRC code to automate your analysis ask us!

Upcoming Hot Topics

- Predicting protein complexes with AlphaFold2
- Single cell RNA-seq
- ATAC-seq
- Enrichment Analysis

