Practical RNA-seq analysis

Prat Thiru

Bioinformatics and Research Computing (BaRC)

http://barc.wi.mit.edu/hot_topics/

Why do RNA-seq?

- RNA-Seq includes experiments to
 - Profile abundance of mRNA and other RNAs
 - Identify alternated spliced transcript isoforms
 - Assemble transcriptome
 - Identify "differentially expressed" genes
 - Identify variants in transcribed regions of genome

Outline

- Experimental design*
- Quality control
- Sequence preparation*
- Mapping spliced reads
- Counting gene levels
- Normalization and identifying "differentially expressed" genes
- Creating figures and summaries*

Hands-on exercises

- All data is in /nfs/BaRC_Public/Hot_Topics/RNAseq_Apr2018
- Create directories on tak
- Link to data files on BaRC_Public
- See handout for series of commands (step 0)
- Commands can be copied from file

RNA-seq_Feb_2018.commands.txt

RNA-seq Analysis Overview

Interpreting RNA-seq

RNA-Seq

ChIP-Seq or Epigenomics

Gene Set Enrichment
Analysis (GSEA)

Gene List

GO Enrichment (ClueGO)

hormone metabolic

cellular hormone

metabolic process

Public RNASeq Datasets

- NCBI GEO
- EBI ArrayExpress
- Broad (e.g. CCLE, GTEx)
- Recount2
- ENCODE
- TCGA
- /nfs/BaRC_datasets

Experimental Design

- Replication is essential if results with confidence are desired.
- With the combination of high numbers of reads per sample and multiplexing, the number of Illumina lanes can be much fewer than number of samples.
- Lots of details to think about:
 - Has someone already done an experiment like this?
 - Total RNA or poly(A) RNA or ...
 - Number of samples?
 - Read length?
 - Paired or unpaired reads?
 - Number of reads?
 - What reference genome to use?
 - Stranded or unstranded?
 - What reference transcriptome to use?

Experimental Design

- Lots of data typically cannot make up for a poor experimental design.
- Look out for bias and confounding.
- Short-read sequencing requires an effectively designed experiment.
- See BaRC about reducing batch effects

Design of Sample Experiment

- How does "gene expression" (really: transcript levels) differ between European and Africans?
- European samples (n=2) Montgomery et al., 2010
 - 37nt paired-end reads
- African samples (n=2) Pickrell et al., 2010
 - 46nt single-end reads
- Sample data contains about 10% of total reads
- Is this a good design?

QC Before Alignment

- FastQC, use mulitQC to view
- Check quality of file of raw reads (fastqc_report.html)
 - Respond to QC analysis:
 - Filter poor-quality reads
 - Trim poor-quality positions
 - Trim adapter and/or other vector
 - Check quality of file of modified reads
 - See previous Hot Topic:

NGS: Quality Control and Mapping Reads (Feb 2014)

See handout for fastqc command (step 1)

Basic Statistics

Measure	Value						
Filename	NA07357_CEU_1.fastq						
File type	Conventional base calls						
Encoding	Sanger / Illumina 1.9						
Total Sequences	7940176						
Filtered Sequences	0						
Sequence length	37						
%GC	56						

Per base sequence quality

Responding to Quality Issues

Method 1:

- Keep all reads as is
- Map as many as possible

Method 2:

- Drop all poor-quality reads
- Trim poor-quality bases
- Map only good-quality bases
- Which makes more sense for your experiment?

RNA-Seq Genome Mapping

- Reads can be mapped with a splice-aware alignment tool such as STAR (recommended), or many others (e.g. HISAT2*)
- The ideal tool should map to best hit(s), whether to continuous or spliced genome segments
- Look at alignment stats and mapped reads in a browser (and re-map if needed).

Mapping Considerations

Mapping considerations

- Type of quality score encoding?
- Use all or just canonical chromosomes?
- Include known splice junctions (in GTF file)?
- Look for novel splice junctions?
- How short of a sub-read should map to an exon boundary?
- How long are your introns?

STAR Aligner

- I. Sequential search for Maximal Mappable Prefix (MMP)
- II. Stitch together all the seeds that were aligned to the genome from I)

Alignment with STAR

Create genome index using genomeGenerate, also see /nfs/genomes

-readFilesCommand zcat --outSAMtype BAM SortedByCoordinate

Run alignment, e.g.
 STAR --genomeDir /path/to/GenomeDir --readFilesIn /path/to/read1.fq.gz
 /path/to/read2.fq.gz --sjdbScore 2 --outFileNamePrefix whateverPrefix --runThreadN 8 -

	runMode <alignreads, genomeGenerate></alignreads, 	"alignReads" does the actual mapping. "genomeGenerate" generates the genomeDir required for mapping (default = alignReads).
	_	Specifies the path to the directory used for storing the genome information created in the genomeGenerate step.
	genomeFastaFiles <genome FASTA files></genome 	Specifies genome FASTA files to be used.
	readFilesIn <read1.fastq read2.fastq></read1.fastq 	Specifies the fastq files containing the reads, can be single-end or paired-end.
	sjdbScore <n></n>	Provides extra alignment score for alignments that cross database junctions (default = 2).
	runThreadN <n></n>	Specifies the number of threads to use.
	readFilesCommand <cmd></cmd>	Specifies the command to uncompress compressed fastq files. For gzipped files (*.gz) usereadFilesCommand zcat.
	OUTSAIVITUDE SKAIVI	Specifies the type of BAM file to create. Options: 'BAM Unsorted', 'BAM SortedByCoordinate', 'BAM Unsorted SortedByCoordinate' (to create both unsorted and sorted BAMs)
1		7.

QC after Alignment

- Confirm that reads are stranded or unstranded
 - Run infer_experiment.py (from **RseQC** package)
 - Look at BAM reads in genome browser

Contamination?

- FastQ Screen

QC after Alignment

- Do reads cover the length of a typical transcript, or is there 3' or 5' bias?
 - Run **Picard** tool:CollectRnaSeqMetrics
- What fraction of reads map to annotated exons?
 - Run 'qualimap rnaseq'
- See BaRC SOPs for commands

RNA-Seq Mapping

Counting RNA-Seq Features

- What features are of interest?
- Gene, transcript, and/or exon counts?
- What happens if a read maps to multiple places?
- What happens if a read maps to multiple features?
- Does the direction of a read need to agree with the direction of the feature?
- What are the limitations of your experiment and analysis details?

htseq-count "modes"

	union	intersection _strict	intersection _nonempty
read gene_A	gene_A	gene_A	gene_A
gene_A	gene_A	no_feature	gene_A
gene_A gene_A	gene_A	no_feature	gene_A
gene_A read gene_A	gene_A	gene_A	gene_A
read gene_A gene_B	gene_A	gene_A	gene_A
gene_A gene_B	ambiguous	gene_A	gene_A
gene_A gene_B	ambiguous	ambiguous	ambiguous

Counting Methods

htseq-count

htseq.readthedocs.io/en/master/count.html

- Output is raw counts
- featureCounts (recommended)

bioinf.wehi.edu.au/featureCounts/

- Output is raw counts
- Cufflinks

cole-trapnell-lab.github.io/cufflinks/

- Output is FPKM and related statistics
- Bedtools (intersectBed; coverageBed)

bedtools.readthedocs.io/

Output is raw counts (but may need post-processing)

Running featureCounts

Count reads mapping to the specified gene models:

• Usage:

```
featureCounts [options] -a <annotation_file> -o
<output_file> input_file1 [input_file2] ...
```

Example:

```
#single-end reads (unstranded)
  featureCounts -a gene_anotations.gtf -o
  MySample.featureCounts.txt MySample.bam
#paired-end reads (forward stranded)
  featureCounts -p -s 1 -a gene_anotations.gtf -o
  MySample.featureCounts.txt MySample.sorted.bam
```


Running featureCounts: Options

Option	Description
minOverlap	Minimum number of overlapping bases in a read that is required for read assignment. 1 by default.
fracOverlap	Minimum fraction of overlapping bases in a read that is required for read assignment.
-M	Multi-mapping reads will also be counted.
-S	Perform strand-specific read counting. Acceptable values: 0 (unstranded), 1 (stranded) and 2 (reversely stranded). 0 by default.

See handout for featureCounts commands (step 3)

Differential Expression Statistics

- RNA-Seq RNA levels can be written as a continuous value (FPKM) or as integer counts
- Statistics of these are inherently different
- All statistics are dependent on coverage (number of mapped reads)
- All statistics require sample replication to quantify withinsample variability
- Lack of replication greatly reduces the strength of one's conclusions.

Normalization

- Raw counts cannot be compared directly
- Correct for sequencing depth (i.e. library size) and RNA composition bias
 - CPM: counts per million
 - FPKM*: fragments per kilobase per million mapped reads
 - TPM*: transcripts per million
 - DESeq: Relative Log Expression (RLE)
 - edgeR: Trimmed Mean M-values (TMM)

Differential Expression Methods

- Count-based methods (recommended)
 - Input is matrix of raw counts
 - DESeq2 (R package) -- recommended
 - edgeR (R package)
 - Typically used to compare gene counts
- Cufflinks (cuffdiff)
 - Inputs are mapped reads (SAM format)
 - Typically used to compare gene and transcript counts
- See handout for DESeq2 commands (step 4)

Interpreting DESeq2 output

Gene ID (from GTF file)	Mean norm counts	Log2 (fold change)	logFC std error	Wald statistic	Raw p-value	FDR p-value	Raw counts				Normalized counts = raw / (size factor)				
Feature.ID	baseMea n	log2(YRI/ CEU)	lfcSE	stat	pvalue	padj	_	CEU_N A11881	YRI_NA18 502	YRI_NA1 9200	_	_	_	YRI_NA1 9200.nor m	
ENSG00000251705	114.15	-3.48	0.46	-7.60	2.90E-14	4.48E-11	197	250	8	14	172.84	257.56	5.77	20.42	
ENSG00000236552	66.39	-3.86	0.52	-7.47	8.29E-14	1.07E-10	180	96	2	5	157.93	98.9	1.44	7.29	
ENSG00000226958	2073.59	-2.45	0.38	-6.52	6.88E-11	7.58E-08	3324	4148	407	556	2916.4 2	4273.49	293.32	811.14	
ENSG00000064886	54.20	3.31	0.54	6.09	1.11E-09	1.05E-06	9	1	84	101	7.9	1.03	60.54	147.35	
ENSG00000198786	2006.17	-1.95	0.32	-6.08	1.23E-09	1.05E-06	4601	2391	834	633	4036.8 4	2463.33	601.05	923.47	
ENSG00000100292	58.87	-2.86	0.47	-6.04	1.54E-09	1.19E-06	131	98	13	7	114.94	100.96	9.37	10.21	

sizeFactors (from DESeq2):

Differential Expression Issues

- Given that statistics are
 - based on complex models
 - influenced by even more complex biology
 - The p-values may not be accurate but can be very effective at ranking genes
- Statistics don't work very well when one sample has no counts.
- You have to choose appropriate thresholds.

Presenting Results

- What do you want to show?
- All expression-type figures are possible
- All-gene scatterplots can be helpful to
 - See level and fold-change ranges
 - Identify sensible thresholds
 - Hint at data or analysis problems
- Heatmaps are useful if many conditions are being compared but only for gene subsets
- Output normalized read counts with same method used for DE statistics
- Whenever one gene is especially important, look at the mapped reads in a genome browser

Scatterplots

Standard scatterplot

MA (ratio-intensity) plot

Heatmap example: genes with FDR < 0.2

Summary

- Experimental design
- Quality control (fastqc)
- Sequence preparation
- Mapping spliced reads (STAR)
- Counting gene levels (featureCounts)
- Normalization and identifying "differentially expressed" genes (DESeq2 R package)
- Creating figures and summaries
- Save your commands!

Resources

- Previous Hot Topics (http://jura.wi.mit.edu/bio/education/hot_topics/)
- An introduction to R and Bioconductor: A BaRC Short Course
- Barc SOPs (http://barcwiki.wi.mit.edu/wiki/SOPs)
- Online software manuals
 - STAR, featureCounts, DESeq2, etc.
- Conesa et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016 Jan 26;17:13.
- Various datasets: /nfs/BaRC_datasets
- Genome index and GTF files are in /nfs/genomes

