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Why do RNA-seq? 

• RNA-Seq includes experiments to 
– Profile abundance of mRNA and other RNAs 
– Identify alternated spliced transcript isoforms 
– Assemble transcriptome 
– Identify "differentially expressed" genes 
– Identify variants in transcribed regions of 

genome 
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Outline 
• Experimental design* 

• Quality control 
• Sequence preparation* 

• Mapping spliced reads 
• Counting gene levels 
• Normalization and identifying "differentially 

expressed" genes 
• Creating figures and summaries* 
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Hands-on exercises 

• All data is in  
/nfs/BaRC_Public/Hot_Topics/RNAseq_Apr2018 

• Create directories on tak  
• Link to data files on BaRC_Public 

 
• See handout for series of commands (step 0) 

 
• Commands can be copied from file 

RNA-seq_Feb_2018.commands.txt 
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RNA-seq Analysis Overview 

5 Conesa, A., et al. A survey of best practices for RNA-seq data analysis Genome Biology (2016) 
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ChIP-Seq or Epigenomics 

RNA-Seq 
? 

: 
Gene List 

Interpreting RNA-seq 

Gene Set Enrichment 
Analysis (GSEA) 

GO Enrichment (ClueGO) 

Gene Log Ratio p-value 

Abcg1 -2.09614 4.72E-07 
Adamts5 2.483321 1.33E-07 
Alox12b -2.41347 3.59E-07 
Arg1 -2.27214 3.06E-07 
AU018091 2.048711 4.62E-07 

Bex1 2.591349 4.08E-07 
Degs2 -2.46253 1.54E-07 
Klk7 -2.18902 3.77E-07 
Krt78 -2.89916 2.18E-07 
Ly6c1 3.085592 9.41E-08 
Ly6g6c -2.55108 3.62E-07 
Sdr16c6 -2.16277 4.05E-07 
Sdr9c7 -2.25984 2.63E-07 
Sept5 -2.08797 6.31E-07 
Kprp -2.34542 6.77E-07 
Ly6a 2.839925 6.04E-07 
Slc2a3 2.199118 6.52E-07 
Sprr2i -2.22872 5.67E-07 
Mxd1 -1.77522 9.66E-07 
Cidea -1.93749 1.20E-06 
Krt16 -1.91642 1.24E-06 
Krt8 2.057569 1.22E-06 
Trex2 -1.71243 1.29E-06 
Aldh3b2 -1.7556 2.63E-06 
Asprv1 -1.56796 2.35E-06 



Public RNASeq Datasets 

• NCBI GEO  
• EBI ArrayExpress 
• Broad (e.g. CCLE, GTEx) 
• Recount2 
• ENCODE 
• TCGA 
• /nfs/BaRC_datasets 
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Experimental Design 
• Replication is essential if results with confidence are desired. 

 
• With the combination of high numbers of reads per sample and 

multiplexing, the number of Illumina lanes can be much fewer than 
number of samples. 
 

• Lots of details to think about: 
– Has someone already done an experiment like this? 
– Total RNA or poly(A) RNA or … 
– Number of samples? 
– Read length? 
– Paired or unpaired reads? 
– Number of reads? 
– What reference genome to use? 
– Stranded or unstranded? 
– What reference transcriptome to use? 
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Experimental Design 

• Lots of data typically 
cannot make up for a 
poor experimental design. 
 

• Look out for bias and 
confounding. 
 

• Short-read sequencing 
requires an effectively 
designed experiment. 
 

• See BaRC about reducing 
batch effects 

9  Auer, PL and Doerge, RW Statistical design and analysis of RNA sequencing data Genetics (2010) 



Design of Sample Experiment 
 • How does "gene expression" (really: transcript levels) 

differ between European and Africans? 
 

• European samples (n=2) Montgomery et al., 2010  

– 37nt paired-end reads 
 

• African samples (n=2) Pickrell et al., 2010 

– 46nt single-end reads 
 

• Sample data contains about 10% of total reads 
 

• Is this a good design? 
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QC Before Alignment 
• FastQC, use mulitQC to view 
• Check quality of file of raw 

reads (fastqc_report.html) 
• Respond to QC analysis: 

– Filter poor-quality reads  
– Trim poor-quality positions 
– Trim adapter and/or other 

vector 
• Check quality of file of 

modified reads 
• See previous Hot Topic: 
 NGS: Quality Control and Mapping Reads (Feb 

2014) 
 

• See handout for fastqc 
command (step 1) 
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@WIGTC-HISEQ3:1:1212:18183:1997#TTAGGC/1 
NCCACAACAGGGCACGGTGCGGAATAGAGAACTATCCCTT 
+WIGTC-HISEQ3:1:1212:18183:1997#TTAGGC/1 
B[[[[aeaeeaeeeeeeeeeeeeeeeeeeeeeeeeeeeee 



Responding to Quality Issues 

• Method 1:  
– Keep all reads as is 
– Map as many as possible 

 
• Method 2: 

– Drop all poor-quality reads 
– Trim poor-quality bases 
– Map only good-quality bases  

 
• Which makes more sense for your experiment? 
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RNA-Seq Genome Mapping 

• Reads can be mapped with a splice-aware 
alignment tool such as STAR (recommended), 
or many others (e.g. HISAT2*) 

• The ideal tool should map to best hit(s), 
whether to continuous or spliced genome 
segments 

• Look at alignment stats and mapped reads in 
a browser (and re-map if needed). 

 

 
 

 
 

13 *Successor of TopHat (note: TopHat no longer recommended!) 



Mapping Considerations 

14 Adapted from Conesa, A., et al. A survey of best practices for RNA-seq data analysis Genome Biology (2016) 



Mapping considerations 
• Type of quality score encoding? 
• Use all or just canonical chromosomes? 
• Include known splice junctions (in GTF file)? 
• Look for novel splice junctions? 
• How short of a sub-read should map to an 

exon boundary? 
• How long are your introns? 
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STAR Aligner 

I. Sequential search 
for Maximal 
Mappable Prefix 
(MMP) 

II. Stitch together all 
the seeds that 
were aligned to the 
genome from I) 

16 Dobin, A., et al. STAR: ultrafast universal RNA-seq aligner Bioinformatics (2012) 



Alignment with STAR 
 • Create genome index using genomeGenerate,  also see /nfs/genomes 

 
• Run alignment, e.g. 
STAR --genomeDir /path/to/GenomeDir --readFilesIn /path/to/read1.fq.gz 
/path/to/read2.fq.gz --sjdbScore 2 --outFileNamePrefix whateverPrefix --runThreadN 8 -
-readFilesCommand zcat --outSAMtype BAM SortedByCoordinate 
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--runMode <alignReads, 
genomeGenerate> 

"alignReads" does the actual mapping. "genomeGenerate" generates the genomeDir 
required for mapping (default = alignReads).  

--genomeDir 
</path/to/GenomeDir> 

Specifies the path to the directory used for storing the genome information created 
in the genomeGenerate step.  

--genomeFastaFiles <genome 
FASTA files> Specifies genome FASTA files to be used. 

--readFilesIn <read1.fastq 
read2.fastq> Specifies the fastq files containing the reads, can be single-end or paired-end. 

--sjdbScore <n>  Provides extra alignment score for alignments that cross database junctions (default 
= 2). 

--runThreadN <n>  Specifies the number of threads to use. 

--readFilesCommand <cmd>  Specifies the command to uncompress compressed fastq files. For gzipped files 
(*.gz) use --readFilesCommand zcat.  

--outSAMtype <BAM 
sortingMode> 

Specifies the type of BAM file to create. Options: 'BAM Unsorted', 'BAM 
SortedByCoordinate', 'BAM Unsorted SortedByCoordinate' (to create both unsorted 
and sorted BAMs)  

See handout for STAR command (step 2) 
 



QC after Alignment 

• Confirm that reads are 
stranded or unstranded 
– Run infer_experiment.py 

(from RseQC package) 
– Look at BAM reads in 

genome browser 

• Contamination? 
– FastQ Screen 

 
18 

stranded unstranded 



QC after Alignment 

• Do reads cover the length 
of a typical transcript, or is 
there 3' or 5' bias? 
– Run Picard tool: 

CollectRnaSeqMetrics   
• What fraction of reads map 

to annotated exons? 
– Run ‘qualimap rnaseq’  

• See BaRC SOPs for 
commands 
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RNA-Seq Mapping 
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Unmapped Reads:  
novel splice junctions? 

Mapped Reads:  
novel exon or gene? Known exons/gene 



Counting RNA-Seq Features 

• What features are of interest? 
• Gene, transcript, and/or exon counts? 
• What happens if a read maps to 

multiple places? 
• What happens if a read maps to 

multiple features? 
• Does the direction of a read need to 

agree with the direction of the 
feature? 

• What are the limitations of your 
experiment and analysis details? 
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htseq-count "modes" 



Counting Methods 

• htseq-count 
htseq.readthedocs.io/en/master/count.html 
– Output is raw counts 

 

• featureCounts (recommended) 
bioinf.wehi.edu.au/featureCounts/ 
– Output is raw counts 
 

• Cufflinks  
cole-trapnell-lab.github.io/cufflinks/ 
– Output is FPKM and related statistics 

 

• Bedtools (intersectBed; coverageBed) 
bedtools.readthedocs.io/ 
Output is raw counts (but may need post-processing) 
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Running featureCounts 
Count reads mapping to the specified gene 
models:  
• Usage: 
 featureCounts [options] -a <annotation_file> -o 

<output_file> input_file1 [input_file2] ...  

• Example: 
    #single-end reads (unstranded)  
   featureCounts -a gene_anotations.gtf -o    
   MySample.featureCounts.txt MySample.bam  
  #paired-end reads (forward stranded) 
   featureCounts –p -s 1 -a gene_anotations.gtf –o    
   MySample.featureCounts.txt MySample.sorted.bam 
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Running featureCounts: Options 
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Option Description 

--minOverlap Minimum number of overlapping bases in 
a read that is required for read 
assignment. 1 by default. 

--fracOverlap  Minimum fraction of overlapping bases in 
a read that is required for read 
assignment.  

-M  Multi-mapping reads will also be counted. 

-s Perform strand-specific read counting. 
Acceptable values: 
0 (unstranded), 1 (stranded) and  
2 (reversely stranded). 
0 by default. 

See handout for featureCounts commands (step 3) 



Differential Expression Statistics 
• RNA-Seq RNA levels can be written 

as a continuous value (FPKM) or as 
integer counts 

• Statistics of these are inherently 
different 

• All statistics are dependent on 
coverage (number of mapped 
reads) 

• All statistics require sample 
replication to quantify within-
sample variability 

• Lack of replication greatly reduces 
the strength of one's conclusions. 
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IGV screenshot 



Normalization 

• Raw counts cannot be compared directly 
• Correct for sequencing depth (i.e. library size) 

and RNA composition bias 
– CPM: counts per million 
– FPKM*: fragments per kilobase per million 

mapped reads 
– TPM*: transcripts per million 
– DESeq: Relative Log Expression (RLE) 
– edgeR: Trimmed Mean M-values (TMM) 
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Differential Expression Methods 

• Count-based methods (recommended) 
– Input is matrix of raw counts 
– DESeq2 (R package) -- recommended 
– edgeR (R package) 
– Typically used to compare gene counts 

 
• Cufflinks (cuffdiff) 

– Inputs are mapped reads (SAM format) 
– Typically used to compare gene and transcript counts 

 
• See handout for DESeq2 commands (step 4) 
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Interpreting DESeq2 output 
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Gene ID (from GTF 
file) 

Mean 
norm 

counts 

Log2 
(fold 

change) 

logFC std 
error  

Wald 
statistic  

Raw  
p-value 

FDR  
p-value Raw counts Normalized counts =  

raw / (size factor) 

sizeFactors (from DESeq2): 
 
CEU_NA07357 CEU_NA11881 YRI_NA18502 YRI_NA19200 
  1.1397535   0.9706359   1.3875763   0.6854579 

Feature.ID baseMea
n 

log2(YRI/
CEU) lfcSE stat pvalue padj CEU_NA

07357 
CEU_N
A11881 

YRI_NA18
502 

YRI_NA1
9200 

CEU_N
A07357
.norm 

CEU_NA
11881.n

orm 

YRI_NA1
8502.nor

m 

YRI_NA1
9200.nor

m 

ENSG00000251705 114.15 -3.48 0.46 -7.60 2.90E-14 4.48E-11 197 250 8 14 172.84 257.56 5.77 20.42 

ENSG00000236552 66.39 -3.86 0.52 -7.47 8.29E-14 1.07E-10 180 96 2 5 157.93 98.9 1.44 7.29 

ENSG00000226958 2073.59 -2.45 0.38 -6.52 6.88E-11 7.58E-08 3324 4148 407 556 2916.4
2 4273.49 293.32 811.14 

ENSG00000064886 54.20 3.31 0.54 6.09 1.11E-09 1.05E-06 9 1 84 101 7.9 1.03 60.54 147.35 

ENSG00000198786 2006.17 -1.95 0.32 -6.08 1.23E-09 1.05E-06 4601 2391 834 633 4036.8
4 2463.33 601.05 923.47 

ENSG00000100292 58.87 -2.86 0.47 -6.04 1.54E-09 1.19E-06 131 98 13 7 114.94 100.96 9.37 10.21 



Differential Expression Issues 

• Given that statistics are  
– based on complex models 
– influenced by even more complex biology 
The p-values may not be accurate but can be very 

effective at ranking genes 
 

• Statistics don't work very well when one sample 
has no counts. 
 

• You have to choose appropriate thresholds. 
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Presenting Results 
• What do you want to show? 
 
• All expression-type figures are possible 

 
• All-gene scatterplots can be helpful to 

– See level and fold-change ranges 
– Identify sensible thresholds 
– Hint at data or analysis problems 

 
• Heatmaps are useful if many conditions are being compared but only for 

gene subsets  
 
• Output normalized read counts with same method used for DE statistics 

 
• Whenever one gene is especially important,  look at the mapped reads 

in a genome browser 
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Scatterplots 
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Standard scatterplot MA (ratio-intensity) plot 



Heatmap  example: genes with FDR < 0.2 
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Excel: 
•Add pseudocounts 
 
Cluster 3.0: 
•Log-transform 
•Mean center 
•Cluster 
 
Java TreeView: 
•Visualize 
•Export 
 

Illustrator 
•Assemble 



Summary 
• Experimental design 
• Quality control (fastqc) 
• Sequence preparation 
• Mapping spliced reads (STAR) 
• Counting gene levels (featureCounts) 
• Normalization and identifying "differentially 

expressed" genes (DESeq2 R package) 
• Creating figures and summaries 
• Save your commands! 
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Resources 
• Previous Hot Topics (http://jura.wi.mit.edu/bio/education/hot_topics/) 

• An introduction to R and Bioconductor: A 
BaRC Short Course 

• BaRC SOPs (http://barcwiki.wi.mit.edu/wiki/SOPs) 

• Online software manuals 
– STAR, featureCounts, DESeq2, etc. 

• Conesa et al.  A survey of best practices for RNA-seq data 
analysis. Genome Biol. 2016 Jan 26;17:13. 

• Various datasets: /nfs/BaRC_datasets 
• Genome index and GTF files are in  /nfs/genomes 
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