Next-Generation Sequencing: Quality Control

BaRC Hot Topics – January 2017 Bioinformatics and Research Computing Whitehead Institute

http://barc.wi.mit.edu/hot_topics/

Why QC?

- Do you want to include the reads with low quality base calls?
- Why are so little reads mapped? Could it be because of adaptor, other species/vectors contamination?
- How is your library preparation? How to identify samples with low library complexity? For RNA-seq, are the high gene expression levels due to real biological signal or to PCR artefacts ?

QC

• Before mapping:

WHITEHEAD INSTITUTE

- How to identify and remove reads with low base calls?
- How to identify and remove reads with linkers/adaptors ?
- How to screen for potential species/vector/ribosomal contamination?
- How is your library complexity?
- After Mapping:
 - What is percentage of reads aligned?
 - Is your sequencing library stranded or unstranded?
 - How could I know if the high expression levels are due to real biological signal or to PCR artefacts?

Illumina data format

• Fastq format:

http://jura.wi.mit.edu/genomecorewiki/index.php/SequencingFormats

	lane tile nu	mber within lane	/1 or /2 paired-end
TACTCCA WIGTC-H	GTAGTCAGGTAGCO ISEQ2:5:2308:0	5056:2097#TTAGGC/1 CCTGGTGCTTGTGACGGGT 5056:2097#TTAGGC/1 Liiiigiiiiiiiiiii	 → @seq identifier → seq → +any description → seq quality values
	Input qualities	Illumina versions	
	solexa-quals	<= 1.2	
	phred64	1.3-1.7	
	phred33	>= 1.8	(10)

1 or 12 paired and

Check read quality with fastqc

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)

1. Run fastqc to check read quality

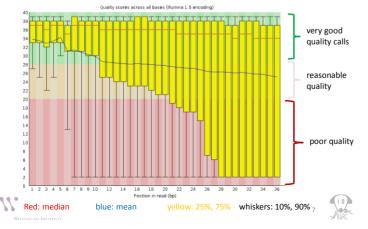
\$ bsub -q 14 fastqc sample.fastq

 Open output file: "fastqc_report.html" /

99.

Summary Basic Statistics Per base sequence quality Per base sequence quality Per base sequence quality scores Per base sequence content Per base sequence OC content Per base N content Sequence Length Distribution Sequence Duplication Levels O overrepresented sequences Adapter Content Marce Content

Output from fastqc

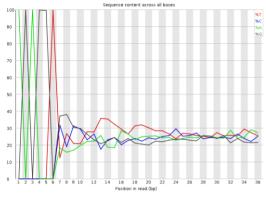

Basic Statistics

Measure	Value
Filename	sample.fastq
File type	Conventional base calls
Encoding	Illumina 1.5
Total Sequences	9053
Filtered Sequences	0
Sequence length	36
%GC	50

We have to know the quality encoding to use the appropriate parameter in the mapping step.

Note: sample.fastq is 0.05% of original fastq

FastQC: per base sequence quality


remove reads with lower quality

-i: input file -o: output file

Use your browser to look at the sample_good_fastqc.html

8

Output from fastqc

About 100% of the first six bases are AGAGGT

Trim the read sequence

delete the first 6nt from 5'

\$ fastx trimmer - h # usage information

-f: First base to keep -l: Last base to keep -i: input file -o: output file -v: report number of sequences

\$ bsub fastx_trimmer -v -f 7 -l 36 -i sample_good.fastq -o sample_good_trimmed.fastq

Problem solved? Check trimmed reads
\$ bsub fastqc sample_good_trimmed.fastq

Use your browser on your laptop to look at the sample_good_trimmed_fastqc.html

10

Output from fastqc can show you the adaptor contamination

Overrepresented sequences

Sequence	Count	Percentage	Possible Source
TGGAATTCTCGGGTGCCAAGGAACTCCAGTCACTTAGGCA	7360116	82.88507591015895	RNA PCR Primer, Index 3 (100% over 40bp)
GCGAGTGCGGTAGAGGGTAGTGGAATTCTCGGGTGCCAAG	541189	6.094535921273932	No Hit
TCGAATTGCCTTTGGGACTGCGAGGCTTTGAGGACGGAAG	291330	3.2807783416601866	No Hit
CCTGGAATTCTCGGGTGCCAAGGAACTCCAGTCACTTAGG	210051	2.365464495397192	RNA PCR Primer, Index 3 (100% over 38bp)

Remove adapter/Linker

\$ cutadapt # usage

bsub " cutadapt -a TGGAATTCTCGGGTGCCAAGGAACTCCAGTCACTTAGGCA foo.fastq | fastx_artifacts_filter > no_adapter.fastq"

-a: Sequence of an adapter that was ligated to the 3' end. -e : max. error rate (default =0.1) fastx artifacts filter: filter reads with all but 3 identical bases

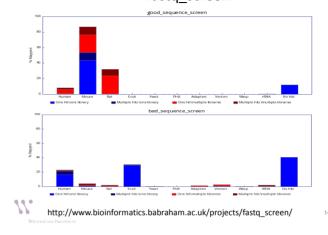
cutadapt: <u>http://code.google.com/p/cutadapt/</u> fastx artifacts filter: <u>http://hannonlab.cshl.edu/fastx_toolkit/galaxy.html#fastx_artifacts</u>

Recommendation for preprocessing

- Treat all the samples the same way.
- Watch out for preprocessing that may result in very different read length in the different samples as that can affect mapping.
- If you have paired-end reads, make sure you still have both reads of the pair after the processing is done.
- Run fastqc on the processed samples to see if the problem has been removed.

fastq_sc	reen
----------	------

- \$ bsub fastq_screen --illumina1_3 --aligner bowtie2 sample_good_trimmed.fastq
 - --aligner Specify 'bowtie' or bowtie2' to use for the mapping


--illumina1_3 Assume that the quality values are in encoded in Illumina v1.3 format. Defaults to Sanger.

--conf Manually specify a location for the configuration file to be used for this run.

On local tak server: /usr/local/bin/fastq_screen.conf contains the source index files. You can create your own configuration file to include other potential contamination.

- DATABASE Human /nfs/genomes/human_hg38_dec13_no_random/bowtie/hg38 DATABASE rRNAs human /nfs/genomes/human rRNAs/rRNAs
- DATABASE rRNAs_human /nfs/genomes/human_rRNAs/rRNAs DATABASE Mouse /nfs/genomes/mouse_mm10_dec_11_no_random/bowtie/mm10
- DATABASE Arabidopsis /nfs/genomes/a.thaliana TAIR 10/bowtie/tair10
- DATABASE Fly /nfs/genomes/d.melanogaster_apr_06/bowtie/dm3
- DATABASE Fish /nfs/genomes/zfish_danRer7/bowtie/danRer7
- DATABASE Yeast /nfs/genomes/sgd_2010/bowtie/sacCer3
- DATABASE PhiX174 /nfs/genomes/phiX174/phiX174 DATABASE Ecoli /nfs/genomes/e coli/e coli
- DATABASE adapters_FastQC /nfs/genomes/NGS_adapters_primers/adapters_primers

Identify species/vectors contamination fastq screen:

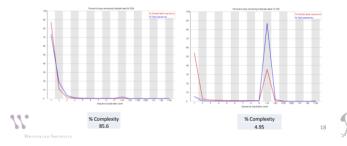
QC

- Before mapping:
 - How to identify and remove reads with low base calls?
 - How to identify and remove reads with linkers/adaptors ?
 - How to screen for potential species/vector/ribosomal contamination?
 - How is your library complexity?
- After Mapping:
 - What is percentage of reads aligned?
 - Is your sequencing library stranded or unstranded?
 - How could I know if the high expression levels are due to real biological signal or to PCR artefacts?

11.

Library Complexity

- Reasons: low-input; single cell RNA-seq
- Low library complexity may be an indicator that:
 - A new sample and a new library should be prepared.
 - We can not sequence the same sample anymore because we will not find new sequences.
- Chip-seq:


11.

- we have to find a better Ab to perform the IP.
- In certain experimental settings we may expect a low library complexity. *i.e.* We are profiling a protein that binds to a small subset of the genome.

BaRC

Library Complexity

- Refers to the fraction of unique fragments present in a given library.
- One proxy for library complexity is to look at the sequence duplication levels on the FastQC report:

- Before mapping:
 - How to identify and remove reads with low base calls?
 - How to identify and remove reads with linkers/adaptors ?
 - How to screen for potential species/vector/ribosomal contamination?
 - How is your library complexity?
- After Mapping:
 - What is percentage of reads aligned?
 - Is your sequencing library stranded or unstranded?
 - How could I know if the high expression levels are due to real biological signal or to PCR artefacts?

Mapping Statistics

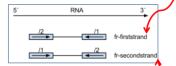
- RSeQC (http://rseqc.sourceforge.net/)
 - \$ bam_stat.py -i sample2.bam > sample_stat.txt Total records: 10000

QC failed:	0
Optical/PCR duplicate:	0
Non primary hits	2121
Unmapped reads:	0
mapq < mapq_cut (non-unique):	507
mapq >= mapq_cut (unique):	7372
Read-1:	3845
Read-2:	3527
Reads map to '+':	5936
Reads map to '-':	1436
Non-splice reads:	7067
Splice reads:	305
Reads mapped in proper pairs:	4566
Proper-paired reads map to different	chrom:0

Is your library stranded or not stranded?

- Checking library preparation protocol
- Mapping your RNA-seq reads as if they were nonstrand specific, "guess" how RNA-seq reads were stranded.
 - RSeQC (http://rseqc.sourceforge.net/)
 - \$ infer_experiment.py -i sample.bam -r gene_model.bed
 - comparing the "strandness of reads" with the "strandness of transcripts".
 - · The "strandness of reads" is determined from alignment
 - the "strandness of transcripts" is determined from annotation.

Infer_experiment.py single-end RNA-seq Two different ways to strand reads: i) ++,-read mapped to '+' strand indicates parental gene on '+' strand read mapped to '-' strand indicates parental gene on '-' strand ii) +-,-+ read mapped to '+' strand indicates parental gene on '-' strand read mapped to '-' strand indicates parental gene on '-' strand strand-specific example: Fraction of reads failed to determine: 0.0170

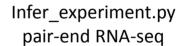

Fraction of reads failed to determine: 0.0170 Fraction of reads explained by "++,--": 0.9669 Fraction of reads explained by "+-,-+": 0.0161

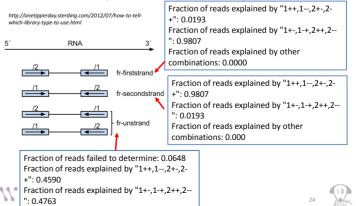
Infer_experiment.py pair-end RNA-seq

Ways to strand reads:

1+-,1-+,2++,2-

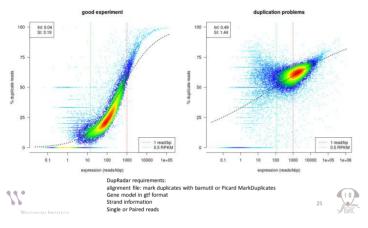
read1 mapped to '*' strand indicates parental gene on '*' strand read1 mapped to '*' strand indicates parental gene on '*' strand read2 mapped to '*' strand indicates parental gene on '*' strand read2 mapped to '*' strand indicates parental gene on '*' strand




1++,1-,2+-,2-+

read1 mapped to '+' strand indicates parental gene on '+' strand read2 mapped to '-' strand indicates parental gene on '-' strand read2 mapped to '+' strand indicates parental gene on '+' strand read2 mapped to '-' strand indicates parental gene on '+' strand

http://onetipperday.sterding.com/2012/07/how-to-tell-which-library-type-to-use.html



DupRadar

(https://www.bioconductor.org/packages/release/bioc/html/dupRadar.html)

References

fastqc	do quality control	http://www.bioinformatics.babraham.ac.uk/projects/fastqc
fastx Toolkit	reads editor	http://hannonlab.cshl.edu/fastx_toolkit/
	remove reads with low base call quality	fastq_quality_filter
	remove 5' or 3' reads	fastx_trimmer
	remove artifacts in reads	fastx_artifacts_filter
cutadapt	remove adaptors	https://code.google.com/p/cutadapt
fastq_screen	screen for species/vectors contamination	http://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/
RSeQC	RNAseq quality control packages	http://rseqc.sourceforge.net/
	get mapping summary	bam_stat.py
	check strandness	infer_experiment.py
DupRadar	check reads duplication	http://bioconductor.org/packages/release/bioc/html/dupRadar.html
QualiMap	mapping summary, coverage distribution	http://qualimap.bioinfo.cipf.es/
Picard	package with functions on NGS data	https://broadinstitute.github.io/picard/
	Insert size of PE reads	CollectInsertSizeMetrics
	coverage across transcripts	CollectRnaSeqMetrics
multiQC	merge QC reports	http://multigc.info/

Summary

- Before mapping:
 - Quality control
 - fastqc
 - Clean up reads:
 - fastx tool kit: fastq_quality_filter, fastx_trimmer
 - Cutadapt
 - Check species/vector contamination
 - fastq_screen
- After mapping:
 - Get mapping statistics:
 - bam_stat.py
 - Check library strandness:
 - Infer_experiment.py
 - Check sequence duplication in RNA-seq samples:
 - DupRadar

11.

BaRC Standard operating procedures

(d) terretel et alla de 100 100	(b + C) 🖬 - they	2 4 # 10
BaRC http	o://barcwiki.wi.mit.ed	lu/wiki/SO
Divisionatics and Research Competing		
	Loger Pro	Tenences Help/Guide Joint
SOP	-	Start Figs Index 4
BaRC Standard operating procedures		
These are "how-to's" detailing the methods any questions about how or why to perform	that BaRC uses and finds to work effectively, what is described on these pages.	Email BaRC if you have
Short read sequencing		
 Quality control and preprocessing of st 	hort-read sequencing	
 Mapping short reads 		
 Using ChIP-Seq to identify and/or quarter 	ntify bound regions (peaks)	
 Using RNA-Seg to quantify gene levels 	s and assay for differential expression	
 Using RNA-Seq to assemble or annotate 	te transcripts	
 Integrating expression and immunopre 	ecipitation experiments	
 Summarizing, mining, and processing t 	SAM/BAH files	
Creating genome feature heatmaps fro	om sequencing experiments	
Creating an analysis pipeline of compr	ressed files	
Variant calling and analysis		
 Calling variants from short read seque 	inclug	
· Using GATK to call variants from short	read sequencing	
 Manipulating VCF files 		
 Interpreting VCF files 		
Genome coordinates and genomics		
Creating genome coordinate files (bed	I, wig, etc) for genome browsers	
Linking genome regions to genome an	motation(s)	
 Extracting genome subsequences 		
 Identifying homologous genes/proteins 		

Coming up

- Introduction to Python:
 - By the authors of "Python For The Life Sciences" book
 - Jan. 24th and 25th @1pm
 - Registration required

