## Next-Generation Sequencing: Quality Control

**Bingbing Yuan** 

BaRC Hot Topics – January 2017 Bioinformatics and Research Computing Whitehead Institute



http://barc.wi.mit.edu/hot\_topics/



# Why QC?

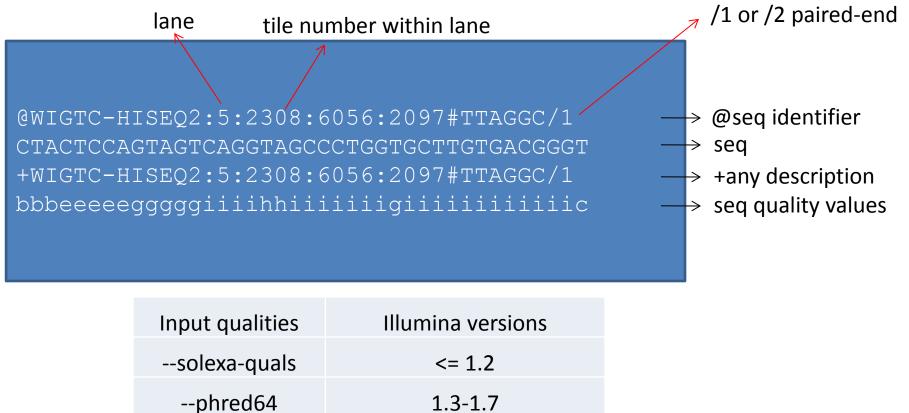
- Do you want to include the reads with low quality base calls?
- Why are so little reads mapped? Could it be because of adaptor, other species/vectors contamination?
- How is your library preparation? How to identify samples with low library complexity? For RNA-seq, are the high gene expression levels due to real biological signal or to PCR artefacts ?





# QC

- Before mapping:
  - How to identify and remove reads with low base calls?
  - How to identify and remove reads with linkers/adaptors ?
  - How to screen for potential species/vector/ribosomal contamination?
  - How is your library complexity?
- After Mapping:
  - What is percentage of reads aligned?
  - Is your sequencing library stranded or unstranded?
  - How could I know if the high expression levels are due to real biological signal or to PCR artefacts?






### Illumina data format

#### • Fastq format:

http://jura.wi.mit.edu/genomecorewiki/index.php/SequencingFormats



>= 1.8



4

Whitehead Institute

--phred33

# Check read quality with fastqc

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)

 Run fastqc to check read quality

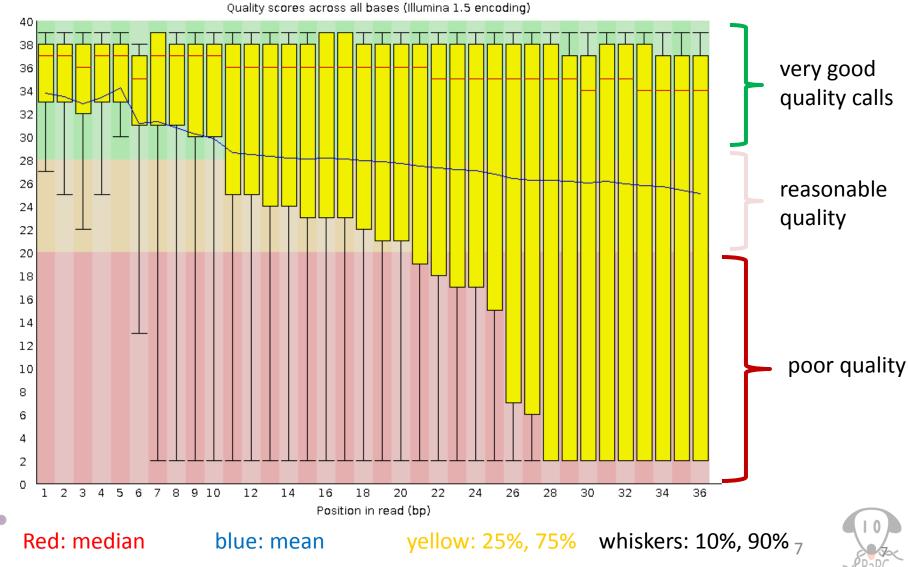
\$ bsub –q 14 fastqc sample.fastq

Open output file:
 "fastqc\_report.html"





#### Output from fastqc


#### **Basic Statistics**

| Measure            | Value                   |
|--------------------|-------------------------|
| Filename           | sample.fastq            |
| File type          | Conventional base calls |
| Encoding           | Illumina 1.5            |
| Total Sequences    | 9053                    |
| Filtered Sequences | 0                       |
| Sequence length    | 36                      |
| %GC                | 50                      |

We have to know the quality encoding to use the appropriate parameter in the mapping step.

Note: sample.fastq is 0.05% of original fastq

#### FastQC: per base sequence quality



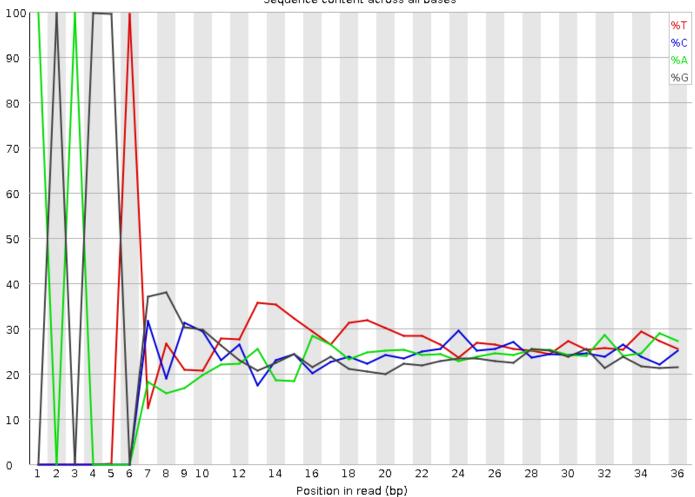
WHITEHEAD INSTITUTE

#### remove reads with lower quality

-i: input file-o: output file-v: report number of sequences

- \$ fastq\_quality\_filter -h # usage information
- \$ bsub -q 14 fastq\_quality\_filter -v -q 20 -p 75 -i sample.fastq -o
  sample\_good.fastq

-q: Minimum quality score-p: Minimum percent of basesthat must have [-q] quality


Check job status: \$ bjobs

Look at your email to see the number of discarded reads

Problem solved? Re-run quality control on filtered reads: \$ bsub fastqc sample\_good.fastq

Use your browser to look at the sample\_good\_fastqc.html

#### Output from fastqc



Sequence content across all bases

About 100% of the first six bases are AGAGGT

#### Trim the read sequence

#### # delete the first 6nt from 5'

\$ fastx\_trimmer -h # usage information

- -f: First base to keep
- -I: Last base to keep
- -i: input file
- -o: output file
- -v: report number of sequences
- \$ bsub fastx\_trimmer -v -f 7 -l 36 -i sample\_good.fastq -o sample\_good\_trimmed.fastq

# Problem solved? Check trimmed reads
\$ bsub fastqc sample\_good\_trimmed.fastq

Use your browser on your laptop to look at the sample\_good\_trimmed\_fastqc.html

# Output from fastqc can show you the adaptor contamination

#### **Overrepresented sequences**

| Sequence                                 | Count   | Percentage         | Possible Source                             |
|------------------------------------------|---------|--------------------|---------------------------------------------|
| TGGAATTCTCGGGTGCCAAGGAACTCCAGTCACTTAGGCA | 7360116 | 82.88507591015895  | RNA PCR Primer, Index 3 (100%<br>over 40bp) |
| GCGAGTGCGGTAGAGGGTAGTGGAATTCTCGGGTGCCAAG | 541189  | 6.094535921273932  | No Hit                                      |
| TCGAATTGCCTTTGGGACTGCGAGGCTTTGAGGACGGAAG | 291330  | 3.2807783416601866 | No Hit                                      |
| CCTGGAATTCTCGGGTGCCAAGGAACTCCAGTCACTTAGG | 210051  | 2.365464495397192  | RNA PCR Primer, Index 3 (100%<br>over 38bp) |

#### Remove adapter/Linker



\$ cutadapt # usage

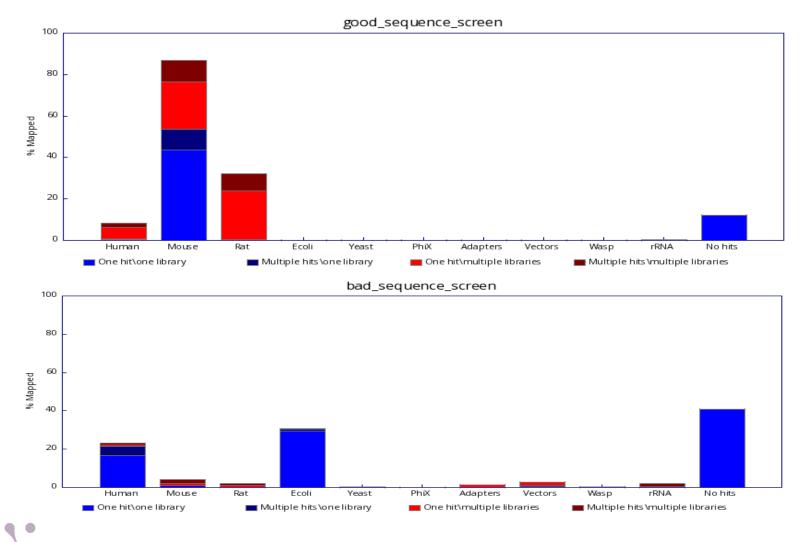
WHITEHEAD INSTITUTE

\$ bsub " cutadapt -a TGGAATTCTCGGGTGCCAAGGAACTCCAGTCACTTAGGCA foo.fastq |
fastx\_artifacts\_filter > no\_adapter.fastq"

-a: Sequence of an adapter that was ligated to the 3' end.
 -e : max. error rate (default =0.1)
 fastx\_artifacts\_filter: filter reads with all but 3 identical bases

cutadapt: <u>http://code.google.com/p/cutadapt/</u>

fastx artifacts filter: <a href="http://hannonlab.cshl.edu/fastx\_toolkit/galaxy.html#fastx\_artifacts">http://hannonlab.cshl.edu/fastx\_toolkit/galaxy.html#fastx\_artifacts</a>




#### Recommendation for preprocessing

- Treat all the samples the same way.
- Watch out for preprocessing that may result in very different read length in the different samples as that can affect mapping.
- If you have paired-end reads, make sure you still have both reads of the pair after the processing is done.
- Run fastqc on the processed samples to see if the problem has been removed.



# Identify species/vectors contamination fastq\_screen:



http://www.bioinformatics.babraham.ac.uk/projects/fastq\_screen/



#### fastq\_screen

 \$ bsub fastq\_screen --illumina1\_3 --aligner bowtie2 sample\_good\_trimmed.fastq

--aligner Specify 'bowtie' or bowtie2' to use for the mapping

--illumina1\_3 Assume that the quality values are in encoded in Illumina v1.3 format. Defaults to Sanger.

--conf Manually specify a location for the configuration file to be used for this run.

On local tak server: /usr/local/bin/fastq\_screen.conf contains the source index files. You can create your own configuration file to include other potential contamination.

- DATABASE Human /nfs/genomes/human\_hg38\_dec13\_no\_random/bowtie/hg38
- DATABASE rRNAs\_human /nfs/genomes/human\_rRNAs/rRNAs
- DATABASE Mouse /nfs/genomes/mouse\_mm10\_dec\_11\_no\_random/bowtie/mm10
- DATABASE Arabidopsis /nfs/genomes/a.thaliana\_TAIR\_10/bowtie/tair10
- DATABASE Fly /nfs/genomes/d.melanogaster\_apr\_06/bowtie/dm3
- DATABASE Fish /nfs/genomes/zfish\_danRer7/bowtie/danRer7
- DATABASE Yeast /nfs/genomes/sgd\_2010/bowtie/sacCer3
- DATABASE PhiX174 /nfs/genomes/phiX174/phiX174
- DATABASE Ecoli /nfs/genomes/e\_coli/e\_coli
- DATABASE adapters\_FastQC /nfs/genomes/NGS\_adapters\_primers/adapters\_primers

Whitehead Institute

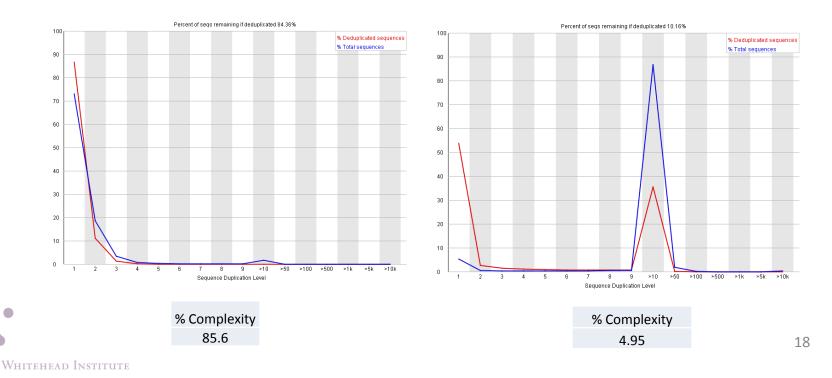
# QC

- Before mapping:
  - How to identify and remove reads with low base calls?
  - How to identify and remove reads with linkers/adaptors ?
  - How to screen for potential species/vector/ribosomal contamination?
  - How is your library complexity?
- After Mapping:
  - What is percentage of reads aligned?
  - Is your sequencing library stranded or unstranded?
  - How could I know if the high expression levels are due to real biological signal or to PCR artefacts?





# Library Complexity


- Reasons: low-input; single cell RNA-seq
- Low library complexity may be an indicator that:
  - A new sample and a new library should be prepared.
  - We can not sequence the same sample anymore because we will not find new sequences.
- Chip-seq:
  - we have to find a better Ab to perform the IP.
  - In certain experimental settings we may expect a low library complexity. *i.e.* We are profiling a protein that binds to a small subset of the genome.





## Library Complexity

- Refers to the fraction of unique fragments present in a given library.
- One proxy for library complexity is to look at the sequence duplication levels on the FastQC report:





# QC

- Before mapping:
  - How to identify and remove reads with low base calls?
  - How to identify and remove reads with linkers/adaptors ?
  - How to screen for potential species/vector/ribosomal contamination?
  - How is your library complexity?
- After Mapping:
  - What is percentage of reads aligned?
  - Is your sequencing library stranded or unstranded?
  - How could I know if the high expression levels are due to real biological signal or to PCR artefacts?





## **Mapping Statistics**

10000

• RSeQC (http://rseqc.sourceforge.net/)

Total records:

- \$ bam\_stat.py -i sample.bam > sample\_stat.txt

| QC failed:<br>Optical/PCR duplicate:         | 0<br>0<br>2121 |  |
|----------------------------------------------|----------------|--|
| Non primary hits<br>Unmapped reads:          | 2121<br>0      |  |
| mapq < mapq_cut (non-unique):                | 507            |  |
| mapq >= mapq_cut (unique):                   | 7372           |  |
| Read-1:                                      | 3845           |  |
| Read-2:                                      | 3527           |  |
| Reads map to '+':                            | 5936           |  |
| Reads map to '-':                            | 1436           |  |
| Non-splice reads:                            | 7067           |  |
| Splice reads:                                | 305            |  |
| Reads mapped in proper pairs:                | 4566           |  |
| Proper-paired reads map to different chrom:0 |                |  |





#### Is your library stranded or not stranded?

- Checking library preparation protocol
- Mapping your RNA-seq reads as if they were nonstrand specific, "guess" how RNA-seq reads were stranded.
  - RSeQC (<u>http://rseqc.sourceforge.net/</u>)
  - \$ infer\_experiment.py -i sample.bam -r gene\_model.bed
    - comparing the "strandness of reads" with the "strandness of transcripts".
    - The "strandness of reads" is determined from alignment
    - the "strandness of transcripts" is determined from annotation.





#### Infer\_experiment.py single-end RNA-seq

Two different ways to strand reads: i) ++,--

i) ++,- read mapped to '+' strand indicates parental gene on '+' strand read mapped to '-' strand indicates parental gene on '-' strand
 ii) +-,-+

read mapped to '+' strand indicates parental gene on '-' strand read mapped to '-' strand indicates parental gene on '+' strand

Strand-specific example:

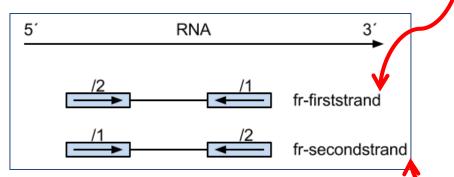
Fraction of reads failed to determine: 0.0170 Fraction of reads explained by "++,--": 0.9669 Fraction of reads explained by "+-,-+": 0.0161



3'

RNA

RNA


5'

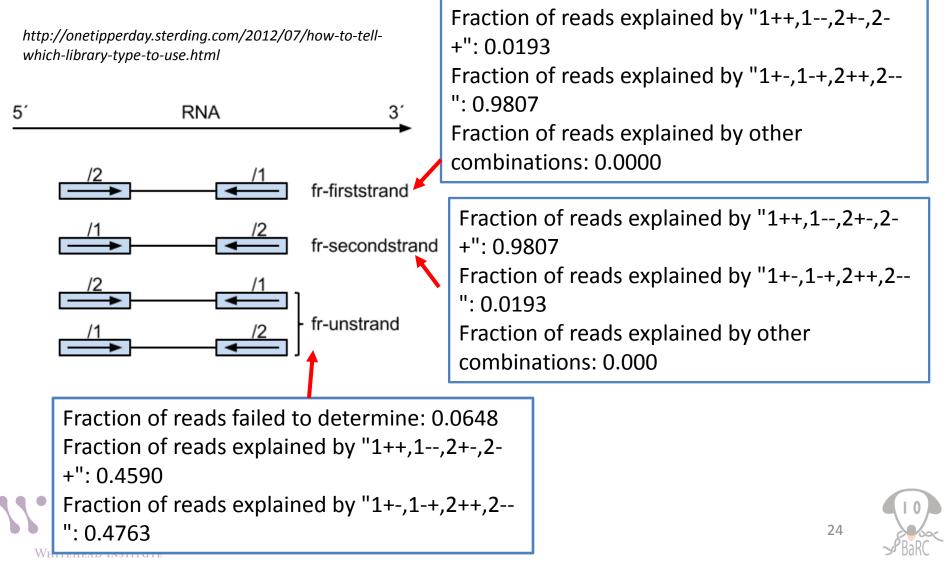
#### Infer\_experiment.py pair-end RNA-seq

Ways to strand reads:

1+-,1-+,2++,2-

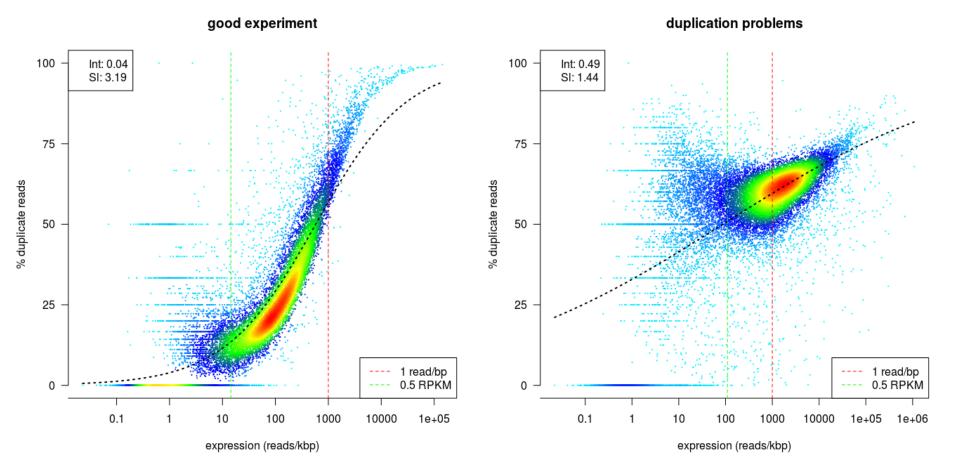
read1 mapped to '+' strand indicates parental gene on '-' strand read1 mapped to '-' strand indicates parental gene on '+' strand read2 mapped to '+' strand indicates parental gene on '+' strand read2 mapped to '-' strand indicates parental gene on '-' strand




1++,1-,2+-,2-+

read1 mapped to '+' strand indicates parental gene on '+' strand read1 mapped to '-' strand indicates parental gene on '-' strand read2 mapped to '+' strand indicates parental gene on '-' strand read2 mapped to '-' strand indicates parental gene on '+' strand

http://onetipperday.sterding.com/2012/07/how-to-tell-which-library-type-to-use.html




#### Infer\_experiment.py pair-end RNA-seq



#### DupRadar

(https://www.bioconductor.org/packages/release/bioc/html/dupRadar.html)



DupRadar requirements: alignment file: mark duplicates with bamutil or Picard MarkDuplicates Gene model in gtf format Strand information Single or Paired reads

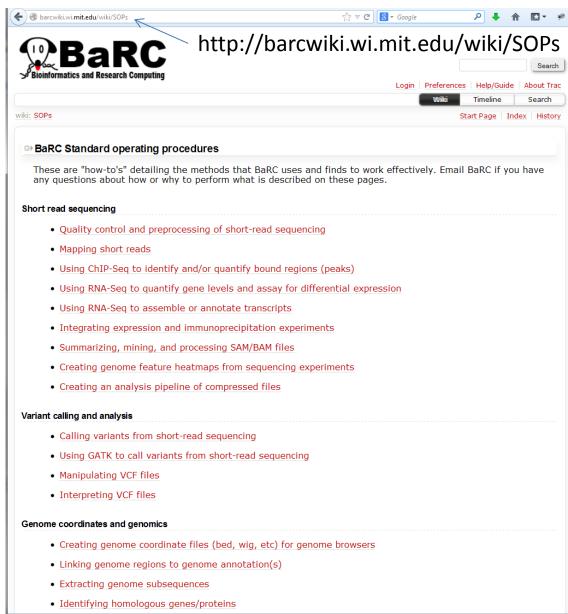


25

WHITEHEAD INSTITUTE

#### Summary

- Before mapping:
  - Quality control
    - fastqc
  - Clean up reads:
    - fastx tool kit: fastq\_quality\_filter, fastx\_trimmer
    - Cutadapt
  - Check species/vector contamination
    - fastq\_screen
- After mapping:
  - Get mapping statistics:
    - bam\_stat.py
  - Check library strandness:
    - Infer\_experiment.py
  - Check sequence duplication in RNA-seq samples:
    - DupRadar


WHITEHEAD INSTITUTE



#### References

| fastqc        | do quality control                       | http://www.bioinformatics.babraham.ac.uk/projects/fastqc         |
|---------------|------------------------------------------|------------------------------------------------------------------|
| fastx Toolkit | reads editor                             | http://hannonlab.cshl.edu/fastx_toolkit/                         |
|               | remove reads with low base call quality  | fastq_quality_filter                                             |
|               | remove 5' or 3' reads                    | fastx_trimmer                                                    |
|               | remove artifacts in reads                | fastx_artifacts_filter                                           |
| cutadapt      | remove adaptors                          | https://code.google.com/p/cutadapt                               |
| fastq_screen  | screen for species/vectors contamination | http://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/  |
| RSeQC         | RNAseq quality control packages          | http://rseqc.sourceforge.net/                                    |
|               | get mapping summary                      | bam_stat.py                                                      |
|               | check strandness                         | infer_experiment.py                                              |
| DupRadar      | check reads duplication                  | http://bioconductor.org/packages/release/bioc/html/dupRadar.html |
| QualiMap      | mapping summary, coverage distribution   | http://qualimap.bioinfo.cipf.es/                                 |
| Picard        | package with functions on NGS data       | https://broadinstitute.github.io/picard/                         |
|               | Insert size of PE reads                  | CollectInsertSizeMetrics                                         |
|               | coverage across transcripts              | CollectRnaSeqMetrics                                             |
| multiQC       | merge QC reports                         | http://multiqc.info/                                             |

#### **BaRC Standard operating procedures**



# Coming up

- Introduction to Python:
  - By the authors of "Python For The Life Sciences" book
  - Jan. 24th and 25th @1pm
  - Registration required



