Linux: Beyond the Basics

Bingbing Yuan BaRC Hot Topics – Oct. 2021 Bioinformatics and Research Computing Whitehead Institute

http://barc.wi.mit.edu/hot_topics/

Logging in to our Linux server

- Our main Unix/Linux server is called tak
- Request a tak account: <u>https://element.wi.mit.edu/am/?f=unixRequest</u>
- Connecting to tak:

http://bioinfo.wi.mit.edu/bio/software/unix/serverConnect.php

- Windows:
 - ➤ MobaXterm
- Mac
 - ➢Access through Terminal

Log in to tak for Mac

0			
	11/2511/7		
- System information as of Fri	Sep 13 15:53:49 EI	IT 2019	
System load: 1.31	Memory usage: 7%	Processes:	597
Usage of /: 8.0% of 438.14GB	Swap usage: 0%	Users logged in:	16
* Find genomes at /nfs/genomes			
* Find bisinformation deterate	at /nfo/RaRC data	coto	

WHITEHEAD INSTITUTE

Connecting to tak from Windows

ssh -Y username@tak.wi.mit.edu

2) Click on the "Start local terminal" button

When you write the password you won't see any

characters being typed.

Hot Topics website: http://barc.wi.mit.edu/education/hot_topics/

- After you login to tak, create a directory for the exercises within your home directory, and use it as your working directory \$ mkdir Hot_Topics \$ cd Hot Topics
- Copy all files into your working directory

\$ cp -r /nfs/BaRC_training/Linux_Beyond/data_files/* .

- You should have the files below in your working directory:
- datasets/ Ensembl_info.txt exercise.txt foo.txt Gene_exp.txt HumanGenes
 PlusMinus3kb.bed peaks.bed sample1.txt exercise.pdf
 - You can check they're there with the 'ls' command

\$ cut -f1,5 foo.tab

\$ cut -f1-5 foo.tab

- -f: select only these fields
- -f1,5: select 1st and 5th fields
- -f1-5: select 1st, 2nd, 3rd, 4th, and 5th fields

\$ wc -l foo.txt

How many lines are in this file?

Whitehead Institute

Linux Review: Common Mistakes

Case sensitive

cd /nfs/Barc_Public is different from cd /nfs/BaRC_Public
-bash: cd: /nfs/Barc_Public: No such file or directory

- Spaces may matter!
 rm -f myFiles* vs rm -f myFiles *
- Office applications can convert text to special characters that Linux won't understand
 - Smart quotes, dashes
 - Carriage return from DOS
 - Use fromdos to remove carriage return

Linux Review: Pipes

- Stream output of one command/program as input for another
 - Avoid intermediate file(s)
 - Merge multiple commands in to one long command

\$ \$ cut -f1 myFile.txt | sort | uniq -c > uniqCounts.txt pipes

What we will discuss today

- Aliases (to reduce typing)
- sed (for file manipulation)
- awk(to filter by column)
- join (merge files)
- groupBy and intersect from bedtools (not typical Linux)
- loops (one-line and with shell scripts)
- scripting (to streamline commands)

Aliases

- Add a one-word link to a longer command
- To get current aliases (from ~/.bashrc)

alias

WHITEHEAD INSTITUTE

Create a new alias (two examples)

```
alias sp='cd /lab/solexa_public/Reddien'
alias picard='java -jar /usr/local/share/picard-
tools/picard.jar'
```

- Make an alias permanent
 - Paste command(s) in ~/.bashrc

sed:

stream editor for filtering and transforming text

• Print lines 10 - 15:

\$ sed -n '10,15p' bigFile > selectedLines.txt

• Delete 5 header lines at the beginning of a file:

\$ sed '1,5d' file > fileNoHeader

• Remove all version numbers (eg: '.1') from the end of a list of sequence accessions: eg. NM_000035.2

\$ sed 's/\.[0-9]\+//g' accsWithVersion > accsOnly

s: substitute g: global modifier (change all)

• Get good examples from "sed cheat sheet":

<u>https://www.pement.org/sed/sed1line.txt</u>

Whitehead Institute

Join files together

With Linux join

\$ join -1 1 -2 2 --nocheck-order -t \$'\t' sorted_File1 sortedFile2

Join files on the 1st field of FILE1 with the 2nd field of FILE2,

only showing the common lines.

FILE1 and FILE2 must be sorted on the join fields before running join

-t \$'\t' : Both input and output use tab as separator

--nocheck-order: good for sorted files with header line.

Sorted sample tables to join:

	Symbol	Hoart	Skeletal	Chin	Smooth	Spinal	
	Symbol	пеан	Muscle	SKIII	Muscle	cord	Ensembl Gene ID Symbol
	HHAT	8.15	7.7	5	6.55	6.4	ENSG00000280680 HHAT
	INPP5D	19.65	5.95	4.55	5.25	14.5	ENSG00000280820 LCN1P1
	NDUFA1	0 441.8	160.2	24.9	188.85	158.75	ENSCO0000280584 OBD2B
	RPS6KA1	. 85.2	47.75	46.45	35.85	44.55	
	RYBP	20.45	13.05	11.95	20.7	17.75	ENSG00000280775 RNA5SP136
	SLC16A1	15.45	20.45	12.2	248.35	27.15	ENSG00000252303 RNU6-280P
							ENSG00000280963 SERTAD4-AS1
			Skeletal	S –	mooth	Spinal	
			Muscle	Skin N	/luscle	cord	Ensembl Gene ID
	Symbol	Heart					
	HHAT	8.15	7.7	5	6.55	6.4	4ENSG00000280680
UTEI	IEAD INSTIT	TITE					

Regular Expressions

- A sequence of characters defining a search pattern
- Powerful, but syntax is often non-intuitive
- Examples

```
List all txt files: ls *.txt
Replace CHR with Chr at the beginning of each line:
$ sed 's/^CHR/Chr/' myFile.txt
Delete a dot followed by one or more numbers
$ sed 's/\.[0-9]\+//g' myFile.txt
```

	Matches
•	All characters
*	Zero or more; wildcard
+	One or more
?	One
٨	Beginning of a line
\$	End of a line
[ab]	Any character in brackets

- Note: regular expression syntax may slightly differ between sed, awk, Linux shell, and Perl
 - Ex: \+ in sed is equivalent to + in Perl

awk

- A simple programing language to process files
- Good for filtering and manipulating multiplecolumn files
- "awk" comes from the original authors: Alfred V. <u>A</u>ho, Peter J. <u>W</u>einberger, Brian W. <u>K</u>ernighan

awk

- By default, awk splits each line by spaces
- Print the 2nd and 1st fields of the file:
 \$ awk ' { print \$2"\t"\$1 } ' foo.tab

WHITEHEAD INSTITUTE

• Convert sequences from tab delimited format to fasta format:

```
$ head -1 foo.tab
Seq1 ACTGCATCAC
$ awk ' { print ">" $1 "\n" $2 }' foo.tab > foo.fa
$ head -2 foo.fa
>Seq1
ACGCATCAC
```


awk: field separator

- Issues with default separator (white space)
 - one field is gene description with multiple words
 - consecutive empty cells
- To use tab as the separator:

```
$ awk -F "\t" '{ print NF }' foo.txt
```

or

\$ awk 'BEGIN {FS="\t"} { print NF }' foo.txt

BEGIN: action before read inputNF: number of fields in the current recordFS: input field separatorOFS: output field separatorEND: action after read input

Character	Description	
\n	newline	
\r	carriage return	
\t	horizontal tab	

awk: arithmetic operations

Add average values of 4th and 5th fields to the file: \$ awk '{ print \$0 "\t" (\$4+\$5)/2 }' foo.tab

\$0: all fields

Operator	Description
+	Addition
-	Subtraction
*	Multiplication
/	Division
%	Modulo
٨	Exponentiation
**	Exponentiation

awk: making comparisons

Print out records if values in 4th or 5th field are above 4: \$ awk '{ if(\$4>4 || \$5>4) print \$0 } ' foo.tab

Sequence	Description
>	Greater than
<	Less than
<=	Less than or equal to
>=	Greater than or equal to
==	Equal to
!=	Not equal to
~	Matches
!~	Does not match
	Logical OR
&&	Logical AND

More awk examples

• Conditional statements:

```
Display expression levels for the gene NANOG:
$ awk '{ if(/NANOG/) print $0 }' foo.txt
or
$ awk '/NANOG/ { print $0 } ' foo.txt
or
$ awk '/NANOG/' foo.txt
```

```
Add line number to the above output:
$ awk '/NANOG/ { print NR"\t"$0 }' foo.txt
NR: line number of the current row
```

• Looping:

```
Calculate the average expression (4<sup>th</sup>, 5<sup>th</sup> and 6<sup>th</sup> fields in this case) for each transcript $ awk '{ total= $4 + $5 + $6; avg=total/3; print $0"\t"avg}' foo.txt
```

or

WHITEHEAD INSTITUTE

\$ awk '{ total=0; for (i=4; i<=6; i++) total=total+\$i; avg=total/3; print \$0"\t"avg }' foo.txt

intersect from bedtools (intersectBed)

Find overlaps between two sets of genomic features

https://bedtools.readthedocs.io/en/latest/content/tools/intersect.html

WHITEHEAD INSTITUTE

intersectBed: Examples

\$ head -2 HumanGenesPlusMinus3kb.bed

chr1	50899700	50905978ENSG00000271782_RP5-850O15.4
chr1	103814769	103831355ENSG00000232753_RP11-347K2.1

\$ head -2 peaks.bed

chr1	19921	20016 MACS_peak_1	50
chr1	20025	20890MACS_peak_2	568

\$ intersectBed -wa -wb -a HumanGenesPlusMinus3kb.bed -b peaks.bed | head -2

chr14595653845968751ENSG0000236624_CCDC163Pchr14595538945956863 MACS_peak_33851192.24chr14595653845968751ENSG0000236624_CCDC163Pchr14595720245957380 MACS_peak_3386121.87

\$ intersectBed -a HumanGenesPlusMinus3kb.bed -b peaks.bed | head -2

chr1	45956538	45956863	ENSG00000236624_	CCDC163P

chr1 45957202 45957380 ENSG00000236624_CCDC163P

\$ intersectBed -a HumanGenesPlusMinus3kb.bed -b peaks.bed | cut -f4 | sort -u | head -2

ENSG0000000003_TSPAN6 ENSG00000000419_DPM1

WHITEHEAD INSTITUTE

Summarize by Columns: groupBy (from bedtools)

Input file must be pre-sorted by grouping column(s)! *input*

Ensembl Gene ID	Ensembl Transcript ID	Symbol
ENSG00000281518	ENST00000627423	FOXO6
ENSG00000281518	ENST00000630406	FOXO6
ENSG00000280680	ENST00000625523	HHAT
ENSG00000280680	ENST00000627903	HHAT
ENSG00000280680	ENST00000626327	HHAT
ENSG00000281614	ENST00000629761	INPP5D
ENSG00000281614	ENST00000630338	INPP5D

-g grpCols	column(s) for grouping
-c -opCols	column(s) to be summarized
-0	Operation(s) applied to opCol: sum, count, min, max, mean, median, stdev, collapse (comma-sep list) distinct (pop-redundant comma-sep list)

Print the gene ID (1st column), the gene symbol , and a list of transcript IDs (2nd field) \$ sort -k1,1 Ensembl_info.txt | groupBy -g 1 -c 3,2 -o distinct,collapse

Partial output

Ensembl Gene ID	Symbol	Ensembl Transcript ID
ENSG00000281518	FOXO6	ENST0000627423,ENST0000630406
ENSG00000280680	HHAT	ENST00000625523,ENST00000626327,ENST00000627903

Shell Flavors

- Syntax (for scripting) depends the shell echo \$SHELL # /bin/bash (on tak)
- bash is common and the default on tak.
- Some Linux shells (incomplete listing):

Shell	Name
sh	Bourne
bash	Bourne-Again
ksh	Korn shell
csh	C shell

Shell script advantages

- Automation: avoid having to retype the same commands many times
- Ease of use and more efficient
- Outline of a script:
- #!/bin/bash shebang: interprets how to run the script *commands...* set of commands used in the script
 #comments write comments using "#"
- Commonly used extension for script is .sh (eg. foo.sh), file must have executable permission

Bash Shell: 'for' loop

- Process multiple files with one command
- Reduce computational time with many cluster nodes

```
for mySam in `/bin/ls *.sam`
do
bsub wc -l $mySam
done
```

WHITEHEAD INSTITUTE

When referring to a variable, \$ is needed before the variable name (\$mySam), but \$ is not needed when defining it (mySam).

Identical one-line command: for samFile in `/bin/ls *.sam`; do bsub wc -l \$samFile; done

Shell script example

#!/bin/bash

1. Take two arguments: the first one is a directory with all the datasets, the second one is for output# 2. For each file, calculate average gene expression, and save the results in a file in the output directory

done

You can use editors such as nedit, gedit, emacs, or pico to create shell scripts.# If you use Windows or Macs text editor, save as simple text format.# Special hidden Windows characters can be be removed with fromdos command

Accessing Shared Resources at Whitehead

- Linux
 - /nfs/BaRC_Public
 - > /nfs/BaRC_training
 - /lab/solexa_public
- Windows (access using *Start Menu* → *Search*)
 - \\wi-files1\BaRC_Public
 - \\wi-files1\BaRC_training
 - \\wi-bigdata\solexa_public
- Macs (access using Go → Connect to Server...)
 - smb://wi-files1/BaRC_Public
 - smb://wi-files1/BaRC_training
 - smb://wi-bigdata/solexa_public

Where's my lab's share?

WHITEHEAD INSTITUTE

http://it.wi.mit.edu/systems/file-storage/lab-share-paths

Further Reading

- BaRC one liners:
 - <u>http://bioinfo.wi.mit.edu/bio/bioinfo/scripts/#unix</u>
- Linux Info for Bioinfo:
 - <u>http://bioinfo.wi.mit.edu/bio/education/unix_intro.</u>
 <u>php</u>
- Bash Guide for Beginners:
 - <u>http://tldp.org/LDP/Bash-Beginners-Guide/html/</u>

Upcoming Hot Topics

http://barc.wi.mit.edu/education/hot_topics/upcoming/

- Python: An Introduction November
- Python: Advanced Topics November
- Analytical project management [TBA]

