Finding and Calling Genome Variants

Outline

- Genome variants overview
- Mining variants from databases
 - **☆**dbSNP
 - HapMap
 - ❖ 1000 Genomes
 - Disease/Clinical variants databases
- Calling variants using your own data
 - Samtools (mpileup/bcftools)

Genomic Variation

- Population genetics
 - Measure/explain diversity
- Disease susceptibility
 - > GWAS
 - Biomarkers
- Variants may cause a particular trait
 - > Regulatory element (eg. promoter, enhancer, etc.)
 - Protein coding sequence (eg. silent, missense, or nonsense mutation)

http://evolution.berkeley.edu/evolibrary/article/mutations_06

Genomic Variation: Sequence vs Structural Variation

Sequence Variants

Туре	Description	Example (Reference / Alternative)	
SNP	Single Nucleotide Polymorphism	Ref: TTG A CGTA	Alt:TTG G CGTA
Insertion	Insertion of one or several nucleotides	Ref: TTGACGTA	Alt:TTGA <mark>TG</mark> CGTA
Deletion	Deletion of one or several nucleotides	Ref: TTG AC GTA	Alt:TTGGTA
Substitution	A sequence alteration where the length of the change in the variant is the same as that of the reference.	Ref: TTG AC GTA	Alt:TTG TA GTA

Structural Variants (>50 bases or more)

Туре	Description	Example (Reference	/ Alternative)
CNV	Copy Number Variation: increases or decreases the copy number of a given region		"Gain" of one copy: "Loss" of one copy:
Inversion	A continuous nucleotide sequence is inverted in the <i>same</i> position		
Translocation	A region of nucleotide sequence that has translocated to a new position (eg. BCR-ABL fusion gene)		

Genome Variation: Individual and Population

- SNP vs SNV (Single Nucleotide <u>Variant</u>)
- SNP: present in more than 1% of the population
 - $-MAF^* > 1\%$ common SNP
 - $-MAF^* < 1\%$ rare SNP
 - Some definitions use 5% as threshold
- On average one variant every 1200 bases (based on HapMap)

Genome Variation: Reference

Organism	Description/Strain	Assembly*
Human	DNA isolated from WBC of 4 anonymous individuals (2 males and 2 females). However, the majority of the sequence came from one of the male donors	GRCh37/GRCh38
Mouse	C57BL/6J	GRCm37/GRCm38
C.elegans	N2	WormBase v WS220
Fruit fly	ISO1	BDGP Release 5
Yeast	S288C	SGD Feb 2011
A.thaliana	Col ecotype	TAIR10

Genome Variation: Distribution of Variants*

VCF Format

- Variant Call Format (VCF); BCF → binary version of VCF
- Text file format with meta-information and header lines, followed by data lines containing information about a position in the genome.

```
Example
     ##fileformat=VCFv4.0
                                                                                Mandatory header lines
     ##fileDate=20100707
     ##source=VCFtools
                                                                                          Optional header lines (meta-data
     ##reference=NCBI36
                                                                                          about the annotations in the VCF body)
     ##INF0=<ID=AA, Number=1, Type=String, Description="Ancestral Allek
VCF header
     ##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 members ip">
     ##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype"
     ##FORMAT=<ID=GO, Number=1, Type=Integer, Description="Genotype Quality (phred score)">
     ##FORMAT=<ID=GL, Number=3, Type=Float, Description="Likeli#oods for RR,RA,AA genotypes (R=ref,A=alt)">
     ##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
     ##ALT=<ID=DEL,Description="Deletion">
     ##INFO=<ID=SVTYPE, Number=1, Type=String, Description="Type of structural variant">
     ##INFO=<ID=END, Number=1, Type=Integer, Description="End position of the variant">
                                                                                                          Reference alleles (GT=0)
     #CHROM POS ID
                        REF
                             ALT
                                     OUAL FILTER INFO
                                                                         FORMAT
                                                                                     SAMPLE1
                        ACG_A,AT
                                          PASS
                                                                         GT:DP
                                                                                     1/2:13
                                                                                               0/0:29
Body
                              T,CT
                                          PASS
                                                                                     0 | 1:100
                                                   H2;AA=T
                                                                         GT:GQ
                                                                                              2/2-70
                                          PASS
                                                                         GT:G0
                                                                                     1.0:77
                                                                                                         Alternate alleles (GT>0 is
            100
                              <DEL>
                                                   SVTYPE=DEL; END=300
                                                                         GT:GQ:DP
                                                                                      1/1:12:3 0/0:20
                                                                                                         an index to the ALT column)
                                                  Other event
    Deletion
                                                                            Phased data (G and C above
                 SNP
                                         Insertion
                                                                            are on the same chromosome)
                            Large SV
```


Describing/Annotating Variants

- General guidelines*
 - > no position 0
 - range indicated by "_" (eg. 586_591)
- DNA
 - > g.957A>T (to include chromosome use chr9:g.957A>T)
 - ➤ g.413delG
 - g.451_452insT
 - > In CDS,
 - **❖** c.23G>C
 - +1 is A of ATG (start codon); -1 is the previous/upstream nucleotide
 - *"" is the stop codon (eg. *1 is the first nucleotide of the stop codon)
- RNA
 - > r.957a>u
- Protein (three/one letter aa)
 - > p.His78Gln

Chr Position Ref Alt Source g.change : rsID : Depth=AvgSampleReadDepth : FunctionGVS : hgvsProteinVariant

16 89824989 G T EVS g.89824989G>T : rs140823801 : Depth=141 : missense : p.Q993K

*For complete list/guidelines see hgvs.org

Genome Variation Databases: dbSNP

- Repository for SNPs and short sequence variation (<50 bases)
- Current build: dbSNP 143 (Mar 2015)
 - ➤ Approx. 88M validated rs#'s for human
 - Mostly germline mutations (smaller subset of somatic)
 - Contains rare variants as well
 - ➤ Various organisms
- Each SNP, or record, is identified by an rs# that includes
 - Summary attributes
 - NCBI resources (linked to ClinVar, GenBank, etc.)
 - External resources (linked to OMIM and NHGRI GWAS)
- Submissions are made from public laboratories and private organizations (ss#'s), and identical records are clustered into a single record (rs#'s).
- rs id is same for different assemblies (eg. GRCh37/38), but chromosomal coordinates may differ!

Hands-on: dbSNP

 Finding SNPs for your favorite gene in dbSNP and UCSC Genome Browser

Genome Variation Databases: HapMap Project

- Created to find distribution of SNPs and other genetic variants (GRCh37 coordinates)
- Phase I: 269 samples (2005)
- Phase II: 270 samples (2007)
- Phase III: 1115 samples (2008)
- Samples were from various populations
 - CHB (Han Chinese)
 - MEX (Mexican ancestry in Los Angeles, CA)
 - > JPT (Japanese) etc.

Genome Variation Databases: 1000 Genomes Project

- Extension of the HapMap in 2008 to catalogue genetic variation by sequencing at least 1000 participants
- Discover population level human genetic variations
- Initially consisted of whole genome low coverage (4X) and high coverage exome (20X) sequencing
- VCF file was developed, and initially maintained, for the project

Mining Disease/Clinical Variants

Database	Link
Catalog of Published GWAS (NHGRI)	genome.gov/26525384
GWAS Central	gwascentral.org
ClinVar (NCBI)	ncbi.nlm.nih.gov/clinvar
PheGenI (NCBI)	ncbi.nlm.nih.gov/gap/phegeni
SNPedia	snpedia.com

Mining Disease/Clinical Variants in Cancer: cBioPortal

- Visualization and analysis of cancer genomics data sets
- Currently 89 data sets (including TCGA) consists of various studies
- Tools/Features:
 - ➤ OncoPrint: graphical summary of genomic alterations
 - ➤ Mutual Exclusivity
 - > Correlation Plots
 - MutationMapper ("lollipop plots")

Hands-on: cBioPortal

Mining cancer variants in cBioPortal website

Mining Disease/Clinical Variants in Cancer: COSMIC

- Catalog of Somatic Mutations in Cancer (COSMIC) created in 2005
- v70 (Aug 2014) had ~2M coding point mutations
- Datasets are curated from published literature and other databases (eg. TCGA, ICGC)
- Available in both GRCh37/38 coordinates
- Tools/Features
 - Cancer Gene Census (currently 572 genes)
 - ➤ Browser: Cancer/Cell Line
 - > COSMIC Mart (similar to BioMart)

Calling Variants

- Align reads to reference* and call variants
- Popular tools include Samtools and GATK (from Broad)
- Germline vs Somatic mutations
- Samtools:
 - Samtools's mpileup (formerly pileup) computes genotype likelihoods supported by the aligned reads (BAM file) and stores in binary call format (BCF) file.
 - ➤ Bcftools applies the priors (from above) and calls variants (SNPs and indels). Bcftools can be used to filter VCF files.

Calling Variants: Samtools (cont.)

- Removes duplicate reads (eg. from PCR)
- Both unique and multi-mapped reads are used for calling variants
- Recalibrates quality scores to take into account sequencing errors

Calling Variants: Workflow

Analysis

Calling Variants

Calling Variants: Questionable Calls

Calling Variants: Evaluating

- Percent, or number of, reads containing variant vs reference
 - ❖ View in a browser (eg. IGV)
- Base quality (eg. at least Q30)
- Mapping quality (depends on aligner)
- Coverage across region(s) of interest
 - depth of coverage (eg. at least 5X)
 - 20X considered high-coverage
- Strand bias

Calling Variants: Filtering/Querying

- vcf-annotate (from VCFtools*)
 - ❖ vcf-annotate -f + myFile.vcf > myFile annot.vcf
 - * "+" applies several filters with default values, eg.
 - Strand bias: test if variant bases tend to come from one strand (Fisher's Test)
 - End distance bias: test if variant bases tend to occur at a fixed distance from the end of reads (t-test)
- Remove common SNPs (eg. use dbSNP)
 - **♦** bedtools
- bcftools

```
❖ bcftools view -i 'DP>100' myFile.vcf
```

❖ bcftools view -i 'GT[0]=="1/1"' myFile.vcf

Hands-on: Samtools' mpileup/bcftools

Calling variants from an alignment (bam) file

```
samtools mpileup [options] [file1.bam file2.bam ...]
samtools mpileup -d100000 -Buf
/nfs/genomes/human_gp_feb_09_no_random/fasta/chr1.fa -o
chr1_Subset_1000Genomes_CEU.bcf chr1_Subset_1000Genomes_CEU.bam
```

```
❖ bcftools call [options] [file | STDIN]
bcftools call -vmO v -o chr1_Subset_1000Genomes_CEU.vcf
chr1_Subset_1000Genomes_CEU.bcf
```

For list of options see: htslib.org/doc/samtools-1.1.html and http://samtools.github.io/bcftools/bcftools.html

Calling Variants: Annotation

- Annotate variants with (functional) consequence eg. chr12:g25232372A>G is a missense variant
- Popular tools include snpEff, and Variant Effect Predictor (VEP) from Ensembl
- Choice of annotation may affect variant annotation
 - RefSeq
 - Ensemble
 - GENCODE

Further/Downstream Analysis

BaRC SOP

Variant calling using Samtools and GATK.
 Manipulating/interpreting VCF files

http://barcwiki/wiki/SOPs under

Variant calling and analysis

Resources For Mining Variants

Database	Link
dbSNP	www.ncbi.nlm.nih.gov/SNP
НарМар	hapmap.ncbi.nlm.nih.gov
1000 Genomes	1000genomes.org
UK10K	uk10k.org
Exome Variant Server (EVS)	evs.gs.washington.edu/EVS
Personal Genome Project (Harvard)	personalgenomes.org
ExAC Browser (Broad)	exac.broadinstitute.org

Resources For Mining Variants: Cancer

Database	Link
International Cancer Genome	
Consortium (ICGC)	icgc.org
Catalogue of Somatic Mutation in	
Cancer (COSMIC)	cancer.sanger.ac.uk
cBioPortal for Cancer Genomics	cbioportal.org
Cancer Cell Line Encyclopedia (CCLE)	broadinstitute.org/ccle

Resources For Mining Variants: Plants

- 1001 Genomes (A.thaliana 1001 strains)
 - 1001genomes.org
- 1000 Genomes (large-scale gene sequencing of at least 1000 plant species)
 - www.onekp.com

