ChIP-seq Analysis

BaRC Hot Topics - Feb 23th 2016
Bioinformatics and Research Computing
Whitehead Institute

http://barc.wi.mit.edu/hot_topics/
Outline

• ChIP-seq overview
• Experimental design
• Quality control/preprocessing of the reads
• Mapping
 – Map reads
 – Remove unmapped reads (optional) and convert to bam files
 – Check the profile of the mapped reads (strand cross-correlation analysis)
• Peak calling
• Linking peaks to genes
• Visualizing ChIP-seq data with ngsplot
ChIP-Seq overview

Steps in data analysis

1. Quality control

2. Mapping
 Treat IP and control the same way (preprocessing and mapping)

3. Peak calling
 i) Read extension and signal profile generation
 ii) Peak assignment

4. Peak analysis and interpretation
 i) Find genes next to peaks
 ii) Infer possible biological consequences of the binding

Experimental design

• Include a control sample.
• If the protein of interest binds to repetitive regions, using paired-end sequencing may reduce the mapping ambiguity. Otherwise single reads should be fine.
• Include at least two biological replicates. If you have replicates you may want to use the parameter IDR “irreproducible discovery rate”. See us for details.
• If only a small percentage of the reads maps to the genome, you may have to troubleshoot your ChIP protocol.
Illumina data format

- **Fastq format:**

 http://en.wikipedia.org/wiki/FASTQ_format

  ```
  @ILLUMINA-F6C19_0048_FC:5:1:12440:1460#0/1
  GTAGAACTGGTACGGACAAGGGGAATCTGACTGTAG
  +ILLUMINA-F6C19_0048_FC:5:1:12440:1460#0/1
  hhhhhhhhhhhhhhhhhhhhhhhhhhehhhedhhhhfhhhhhh
  ```

 - @seq identifier
 - seq
 - +any description
 - seq quality values

<table>
<thead>
<tr>
<th>Input qualities</th>
<th>Illumina versions</th>
</tr>
</thead>
<tbody>
<tr>
<td>--solexa-quals</td>
<td><= 1.2</td>
</tr>
<tr>
<td>--phred64</td>
<td>1.3-1.7</td>
</tr>
<tr>
<td>--phred33</td>
<td>>= 1.8</td>
</tr>
</tbody>
</table>
Check read quality with fastqc
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)

1. Run fastqc to check read quality
 `bsub fastqc sample.fastq`

2. Open output file:
 “fastqc_report.html”

Basic Statistics

<table>
<thead>
<tr>
<th>Measure</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filename</td>
<td>Hepg2H3k4mc3_subset.fastq</td>
</tr>
<tr>
<td>File type</td>
<td>Conventional base calls</td>
</tr>
<tr>
<td>Encoding</td>
<td>Sanger / Illumina 1.9</td>
</tr>
<tr>
<td>Total Sequences</td>
<td>1160004</td>
</tr>
<tr>
<td>Filtered Sequences</td>
<td>0</td>
</tr>
<tr>
<td>Sequence length</td>
<td>36</td>
</tr>
<tr>
<td>%GC</td>
<td>45</td>
</tr>
</tbody>
</table>
FastQC: per base sequence quality

Quality value = $-10 \times \log_{10} (\text{error probability})$

- Quality = 10 => error rate = 10% => base call has 90% confidence
- Quality = 20 => error rate = 1% => base call has 99% confidence
- Quality = 30 => error rate = 0.1% => base call has 99.9% confidence
Preprocessing tools

• **Fastx Toolkit** (http://hannonlab.cshl.edu/fastx-toolkit/)

 – FASTQ/A Trimmer: Shortening reads in a FASTQ or FASTQ files (removing barcodes or noise).

 – FASTQ Quality Filter: Filters sequences based on quality

 – FASTQ Quality Trimmer: Trims (cuts) sequences based on quality

 – FASTQ Masker: Masks nucleotides with 'N' (or other character) based on quality

 (for a complete list go to the link above)

• **cutadapt** to remove adapters

 (https://code.google.com/p/cutadapt/)
What preprocessing do we need?

Flagged Kmer Content: About 100% of the first six bases are the same sequence -> Use “FASTQTrimmer”

Bad quality -> Use “FASTQ Quality Filter” and/or “FASTQ Quality Trimmer”

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Count</th>
<th>Percentage</th>
<th>Possible Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGGAATTCTCGGTGCCAAGGAACCTCCAGTCATTAGGCCA</td>
<td>736016</td>
<td>82.88507591015895</td>
<td>RNA PCR Primer, Index 3 (100% over 40bp)</td>
</tr>
<tr>
<td>GCGAGTTGCAGGTTAGGAGGGTGAGTAGTTAAGATTTCGAGGTCGCAAG</td>
<td>541189</td>
<td>6.094535921273932</td>
<td>No Hit</td>
</tr>
<tr>
<td>TCGAATTGTCTTTGGGACTGCGAGGGCTTTGAGGACTGGAGAAG</td>
<td>291330</td>
<td>3.2807783416601866</td>
<td>No Hit</td>
</tr>
<tr>
<td>CCTGGAATTCTCGGTGCCAAGGAACCTCCAGTCATTAGGC</td>
<td>210051</td>
<td>2.365464495397192</td>
<td>RNA PCR Primer, Index 3 (100% over 38bp)</td>
</tr>
</tbody>
</table>

Overrepresented sequences -> If the over represented sequence is an adapter use “cutadapt”
Recommendation for preprocessing

• Treat IP and control samples the same way during preprocessing and mapping.
• Watch out for preprocessing that may result in very different read length in the different samples as that can affect mapping.
• If you have paired-end reads, make sure you still have both reads of the pair after the processing is done.
• Run fastqc on the processed samples to see if the problem has been removed.
Library Complexity

- Refers to the fraction of unique fragments present in a given library.
- One proxy for library complexity is to look at the sequence duplication levels on the FastQC report:

 ![Graphs showing sequence duplication levels](image)

 - % Complexity
 - 85.6
 - 4.95
Library Complexity II

• Low library complexity may be an indicator that:
 – A new sample and a new library should be prepared.
 – We have to find a better Ab to perform the IP.
 – We can not sequence the same sample anymore because we will not find new sequences.

• In certain experimental settings we may expect a low library complexity. i.e. We are profiling a protein that binds to a small subset of the genome.
Mapping
Non-spliced alignment software

- **Bowtie:**
 - bowtie 1 vs **bowtie 2**
 - For reads >50 bp Bowtie 2 is generally faster, more sensitive, and uses less memory than Bowtie 1.
 - Bowtie 2 supports gapped alignment, it makes it better for snp calling. Bowtie 1 only finds ungapped alignments.
 - Bowtie 2 supports a "local" alignment mode, in addition to the "end-to-end" alignment mode supported by bowtie1. However we don’t recommend "local" alignment mode for mapping of ChIP-seq data.

- **BWA:**
 - refer to the [BaRC SOP](#) for detailed information
Local genomic files needed for mapping
tak: /nfs/genomes/

- Human, mouse, zebrafish, C.elegans, fly, yeast, etc.
- Different genome builds
 - mm9: mouse_gp_jul_07
 - mm10: mouse_mm10_dec_11
- human_gp_feb_09 vs human_gp_feb_09_no_random?
 - human_gp_feb_09 includes *_random.fa, *hap*.fa, etc.
- Sub directories:
 - bowtie
 - Bowtie1: *.ebwt
 - Bowtie2: *.bt2
 - fasta: one file per chromosome
 - fasta_whole_genome: all sequences in one file
 - gtf: gene models from Refseq, Ensembl, etc.
Example commands:
Mapping the reads and removing unmapped reads

bsub bowtie2 --phred33-quals -N 1 -x
/nfs/genomes/human_gp_feb_09_no_random/bowtie/hg19 -U
Hepg2Control_subset.fastq -S
Hepg2Control_subset_subset_hg19.N1.sam

Optional: filter reads mapped by quality mapping score
samtools view -bq 10 file.bam > filtered.bam
Peak calling

i) Read extension and signal profile generation
 ▪ strand cross-correlation can be used to calculate fragment length

ii) Peak evaluation
 ▪ Look for fold enrichment of the sample over input or expected background
 ▪ Estimate the significance of the fold enrichment using:
 • Poisson distribution
 • negative binomial distribution
 • background distribution from input DNA
 • model background data to adjust for local variation (MACS)

Estimation of the fragment length: Strand cross-correlation analysis

Example command:

/nfs/BaRC_Public/phantompeakqualtools/run_spp.R
-c=H3k4me3_chr1.bam -savp -
out=H3k4me3_chr1.run_spp.out
Peak calling: MACS

- MACS can calculate the fragment length but we will use a different program and give MACS the fragment length as an input parameter.
- It uses a Poisson distribution to assign p-values to peaks. But the distribution has a dynamic parameter, local lambda, to capture the influence of local biases.
- MACS default is to filter out redundant tags at the same location and with the same strand by allowing at most 1 tag. This works well.
- -g: You need to set up this parameter accordingly:
 Effective genome size. It can be 1.0e+9 or 1000000000, or shortcuts: 'hs' for human (2.7e9), 'mm' for mouse (1.87e9), 'ce' for C. elegans (9e7) and 'dm' for fruit fly (1.2e8), Default:hs
- For broad peaks like some histone modifications it is recommended to use --nomodel and if there is not input sample to use --nolambda.
Example of MACS command

MACS command
bsub macs2 callpeak -t H3k4me3_chr1.bam -c Control_chr1.bam --name H3k4me3_chr1 -f BAM -g hs --nomodel -B --extsize "size calculated on the strand cross-correlation analysis"

PARAMETERS
• -t TFILE Treatment file
• -c CFILE Control file
• --name NAME Experiment name, which will be used to generate output file names. DEFAULT: “NA”
• -f FORMAT Format of tag file, “BED” or “SAM” or “BAM” or “BOWTIE”. DEFAULT: “BED”
• --nomodel skips the step of calculating the fragment size.
• -B create a begraph
• --extsize EXTSIZE The arbitrary extension size in bp. When nomodel is true, MACS will use this value as fragment size to extend each read towards 3' end, then pile them up. **You can use the value from the strand cross-correlation analysis**
MACS output

Output files:

1. Excel peaks file (“_peaks.xls”) contains the following columns
 - Chr, start, end, length, abs_summit, pileup,
 - -LOG10(pvalue), -LOG10(qvalue), name

2. “_summits.bed”: contains the peak summits locations for every peaks.
 The 5th column in this file is -log10qvalue

3. “_peaks.narrowPeak” is BED6+4 format file. Contains the peak locations together with peak summit, fold-change, pvalue and qvalue.

To look at the peaks on a genome browser you can upload one of the output bed files or you can also make a bedgraph file with columns (step 6 of hands on):
- chr, start, end, fold_enrichment
Visualize peaks in IGV

H3k4me3_chr1_treat_pileup.bg

H3k4me3_chr1_control_lambda.bdg

Hepg2H3k4me3_chr1.bedgraph
Other recommendations

• Look at your mapped reads and peaks in a genome browser to verify peak calling thresholds

• Optional: remove reads mapping to the ENCODE and 1000 Genomes blacklisted regions

https://sites.google.com/site/anshulkundaje/projects/blacklists
Linking peaks to genes: Bed tools

intersectBed

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>===============</th>
</tr>
</thead>
<tbody>
<tr>
<td>BED/BAM A</td>
<td>=---------------</td>
</tr>
<tr>
<td>BED File B</td>
<td>=---------------</td>
</tr>
<tr>
<td>Result</td>
<td>=---------------</td>
</tr>
</tbody>
</table>

closestBed

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>===============</th>
</tr>
</thead>
<tbody>
<tr>
<td>BED File A</td>
<td>=---------------</td>
</tr>
<tr>
<td>BED File B</td>
<td>=---------------</td>
</tr>
<tr>
<td>Result</td>
<td>=---------------</td>
</tr>
</tbody>
</table>

coverageBed

Below are the number of features in A (N=...) overlapping B and fraction of bases in B with coverage.

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>===============</th>
</tr>
</thead>
<tbody>
<tr>
<td>BED File B</td>
<td>=---------------</td>
</tr>
<tr>
<td>BED File A</td>
<td>=---------------</td>
</tr>
<tr>
<td>Result</td>
<td>[N=3, 10/15]</td>
</tr>
</tbody>
</table>

slopBed

```
$ cat A.bed
chr1 5 100
chr1 800 980

$ cat my.genome
chr1 1000

$ slopBed -i A.bed -g my.genome -b 5
chr1 0 105
chr1 795 985

$ slopBed -i A.bed -g my.genome -l 2 -r 3
chr1 3 103
chr1 798 983
```

groupBy

It groups rows based on the value of a given column(s) and it summarizes the other columns.
Linking peaks to nearby genes

• Take all genes and add 3Kb up and down with slopBed

 slopBed -b 3000 -i GRCh37.p13.HumanENSEMBLgenes.bed -g /nfs/genomes/human_gp_feb_09_no_random/anno/chromInfo.txt > HumanGenesPlusMinus3kb.bed

• Intersect the slopped genes with peaks and get the list of unique genes overlapping

 intersectBed -wa -a HumanGenesPlusMinus3kb.bed -b peaks.bed | awk '{print $4}' | sort -u > Genesat3KborlessfromPeaks.txt

 intersectBed -wa -a HumanGenesPlusMinus3kb.bed -b peaks.bed | head -3
 chr1 45956538 45968751 ENSG00000236624_CCDC163P
 chr1 45956538 45968751 ENSG00000236624_CCDC163P
 chr1 51522509 51528577 ENSG00000265538_MIR4421
Link peaks to closest gene
For each region find the closest gene and filter based on the distance to the gene

closestBed -d -a peaks.bed -b GRCh37.p13.HumanENSEMBLgenes.bed | head
chr1 20870 21204 H3k4me3_chr1_peak_1 5.77592 chr1 14363 29806 ENSG00000227232_WASH7P 0
chr1 28482 30214 H3k4me3_chr1_peak_2 374.48264 chr1 29554 31109 ENSG00000243485_MIR1302-10 0
chr1 28482 30214 H3k4me3_chr1_peak_2 374.48264 chr1 14363 29806 ENSG00000227232_WASH7P 0

#the next two steps can also be done on excel

closestBed -d -a peaks.bed -b GRCh37.p13.HumanENSEMBLgenes.bed | groupBy -g 9,10 -c 6,7,8, -o distinct,distinct,distinct | head -3
ENSG00000227232_WASH7P 0 chr1 14363 29806
ENSG00000243485_MIR1302-10 0 chr1 29554 31109
ENSG00000227232_WASH7P 0 chr1 14363 29806

closestBed -d -a peaks.bed -b GRCh37.p13.HumanENSEMBLgenes.bed | groupBy -g 9,10 -c 6,7,8, -o distinct,distinct,distinct | awk 'BEGIN {OFS="\t"}{ if ($2<3000) {print $3,$4,$5,$1,$2} } ' | head -5
chr1 14363 29806 ENSG00000227232_WASH7P 0
chr1 29554 31109 ENSG00000243485_MIR1302-10 0
chr1 14363 29806 ENSG00000227232_WASH7P 0
chr1 134901 139379 ENSG00000237683_AL627309.1 0
chr1 135141 135895 ENSG00000268903_RP11-34P13.15 0
Link peaks to closest gene (1 command)
For each region find the closest gene and filter based on the distance to the gene

```bash
closestBed -d -a peaks.bed -b GRCh37.p13.HumanENSEMBLgenes.bed | groupBy -g 9,10 -c 6,7,8, -o distinct,distinct,distinct | awk 'BEGIN {OFS=\"\t\"} { if ($2<3000) {print $3,$4,$5,$1,$2} }' > closestGeneAt3KborLess.bed

closestBed
-d print the distance to the feature in -b

groupBy
-g columns to group on
-c columns to summarize
-o operation to use to summarize
Comparing ChIP-seq across samples

*i.e. Co-localization or differential binding*

To compare two samples you can use:

1. intersectBed (finds the subset of peaks **common** in 2 samples or **unique** to one of them)
2. macs2 bdgdiff (find peaks present only in one of the samples)

If more than 2 samples follow:

```
/nfs/BaRC_Public/BaRC_code/Perl/compare_bed_overlaps
```
Visualizing ChIP-seq reads with ngsplot

See Hot Topics: ngsplot

bsub ngs.plot.r -G hg19 -R tss -C H3k4me3_chr1.bam -O H3k4me3_chr1.tss -T H3K4me3 -L 3000 -FL 300
References

- Reviews and benchmark papers:
  - ChIP-seq: advantages and challenges of a maturing technology (Oct 09)
    (http://www.nature.com/nrg/journal/v10/n10/full/nrg2641.html)
  - Computation for ChIP-seq and RNA-seq studies (Nov 09)
    (http://www.nature.com/nmeth/journal/v6/n11s/full/nmeth.1371.html)
  - A computational pipeline for comparative ChIP-seq analyses. *Nat. Protoc*. 2011
  - ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. *Genome Res. 2012.*
  - Identifying and mitigating bias in next-generation sequencing methods for chromatin biology

- Quality control and strand cross-correlation:
  - http://code.google.com/p/phantompeakqualtools/

- MACS:
    http://liulab.dfci.harvard.edu/MACS/index.html
  - Using MACS to identify peaks from ChIP-Seq data. *Curr Protoc Bioinformatics*. 2011

- Bedtools:
  - https://code.google.com/p/bedtools/
  - http://bioinformatics.oxfordjournals.org/content/26/6/841.abstract

- ngsplot:
Other resources

- Previous Hot Topics  
  Quality Control and Mapping Reads  

- SOPs  
  http://barcwiki.wi.mit.edu/wiki/SOPs/chip_seq_peaks

- ENCODE data  
  http://genome.ucsc.edu/ENCODE/