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Outline

 What to do with a set o
— Basic annotation
— Comparing lists
— Genome mapping
— Obtaining and analyzing promoters
— Gene Ontology and pathway analysis
— Other expression data

interesting genes"

WIBR Microarray Course, © Whitehead Institute, 2007




Generic Microarray Pipeline

Prepare samples and perform hybridizations

In course

o Calculate expression values
 Normalize

 Handle low-level expression values

* Merge data for replicates

o Determine differentially expressed genes
» Cluster interesting data

WIBR Microarray Course, © Whitehead Institute, 2007




Review

— Fold change, t-test, ANOVA
— Bonferroni, False Discovery Rate, etc.

 Filtering; identifying “interesting” genes
o Distance measures for clustering
 Clustering/segmentation types and methods

* What is the best analysis pipeline?
— Why are you doing the experiment?
— Are you being reasonable with the statistics?
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Why draw figures?
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and errors
 Compare raw and normalized data
o Compare controls: are they homogeneous?
* Help decide how to filter data
» Look at a subset of data in detail
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Intensity histogram

Histogram of fetal brain expression
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Intensity histogram

 Using log, scale to transform data
— more normal distribution
— more helpful interpretation

* One way to observe overall intensity of chip
 How to choose genes with “no” expression?
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Intensity scatterplot

Expression in brain: fetal vs adult

Adult (log2 expression value)

0 2 4 6 8 10 12 14 16

Fetal (log2 expression value)
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Intensity scatterplot

» Genes with similar expression are on the
diagonal

o Use log-transformed expression values

» Genes with lower expression
— noisier expression
— harder to call significant
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R-I and M-A plots

R-l plot for brain: fetal vs adult

| =log2 (fetal * adult)
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R-I and M-A plots

R (ratio) = log(chipl / chip2)
| (intensity) = log(chipl * chip2)

M = log,(chipl / chip2)
A = (log,(chipl*chip2))

» Popularized with lowess normalization

 Easier to Intrepret than an intensity
scatterplot
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Volcano plot

p-value from t-test

0.001

0.01

0.1

Brain volcano plot: ratio vs p-value

>

+ Not so interesting
o Down

log2 expression ratio: adult vs fetal
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Volcano plot

statistics and fold change

* Visualize effects of filtering genes by both
measures

» Using fold change vs. statistical measures
for differential expression produce very
different results
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Boxplots

Raw data Normalized data
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Raw and median-normalized log, (expression values)
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Boxplots

— Median
— Quartiles (25% and 75% percentiles)
— Extreme values (>3 quartiles from median)

— Note that mean-normalized chips wouldn’t
have the same median

— Easy in R; much harder to do in Excel
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Chip images

ybridized wi
fetal brain

eImage generated
from .cel file

*Helpful for
quality control
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sing distance measurements

Expression profiles in Novartis human set (U95) closest to
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Functional Analysis: intro

are found, what happens next?
* Driven by experimental questions

» Specificity of hypothesis testing increases
power of statistical tests

e One general question: what’s special about
the differentially expressed genes?
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Annotation using sequence databases

— LocusLink, Ensembl, UniGene, RefSeq, genome
databases

— Each database in turn links to a lot of different types of
data

— Use Excel or programming tools to do this quickly
e Web links, instead of actual data, can also be used.
e \What’s the difference between these databases?
 How can all this data be integrated?
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Venn diagrams

Typical figure More informative figure
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Mappmg genes to the genome
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Promoter extraction

mapped cDNA sequence

o “Promoter” is defined in this context as upstream
regulatory sequence

e Extract genomic DNA using a genome browser:
UCSC, Ensembl, NCBI, GBrowse, etc.

e Functional promoter needs to be determined
experimentally
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Promoter analysis

predicted
— matrix (probabilities of each nt at each site)
— pattern (fuzzy consensus of binding site)

* Functional sites tend to be evolutionarily
conserved

e ChIP chip data (if available) can be much
higher quality
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Gene Ontology

e The ontologies: Gene_Ontology s0ur)

molecular_function [ Go:0003674 ]
binding [ 500005488 |

—_— M 0 I ecu I ar fu nCti O n nucleic acid binding [ 0.0003676]

DNA binding [ G0:0003677 ]

transcription factor activity [ GO-0003700 ]

_ 1 1 RNA polymerase || transcription factor activity, enhancer binding [ co.000370s ]
B I O I Og I Cal p rocess transcription regulator activity [ Go.0030528 |
transcription factor activity [ G0:0003700 ]
RNA polymerase |l transcription factor activity, enhancer binding [ co.0003705 ]
— Cellular component

e Ontologies are like hierarchies except that a
“child” can have more than one “parent”.

* Annotation sources: publications (TAS),
bioinformatics (IEA), genetics (IGl), assays (IDA),
phenotypes (IMP), etc.
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Gene Ontology enrichment analysis

JDlall J C Jlatid [1( JC
genes in your set

 Climb an ontology to get all “parents™ (more
general, “induced” terms)

* Look at occurrence of each term in your set
compared to terms in population (all genes or all
genes on your chip)

e Are some terms over-represented?
Ex: sample:10/100 popl: 600/6000 pop2: 15/6000
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Pathway enrichment analysis

pathways?”
o First step: Link genes to pathways
o Are some pathways over-represented?

e Caveats
— What is meant by “pathway"?
— Multiple DBs with varied annotations
— Annotations are very incomplete
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Enrichment analysis on sorted
expression data

sets
— pathway, genome
location, function, ...
e |s the rank of genes from
any gene set in your sorted
list non-random?

o Example: GSEA s O

Broad Institute
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Comparisons with
other expression studies

« Search for genes, chips, types of experiments,
species
* View or download data

* Normalize but still expect noise
— Check medians and distribution of data

 |t’s much easier to make comparisons within an
experiment than between experiments
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bar graphs, Venn diagrams
Annotation to sequence DBs
Genome mapping

Promoter extraction and analysis

GO and pathway enrichment analysis
Comparison with published studies
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More information

Bioconductor short courses: http://www.bioconductor.org
o BaRC analysis tools:
— http://jura.wi.mit.edu/bioc/tools/
* (Gene Ontology Consortium website:
— http://www.geneontology.org/
e Dov Stekel. Microarray Bioinformatics. Cambridge, 2003.

o Parmigiana G et al. The Analysis of Gene Expression Data:
Methods and Software. Springer, 2003.
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Exercises

— Volcano plot

e Functional analysis
— Annotation
— Comparisons
— (Genome mapping
— Promoter extraction and analysis
— GO and pathway analysis
— Using other expression studies
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