Unix, Perl and BioPerl

I: Introduction to Unix for Bioinformatics

George Bell, Ph.D.
WIBR Bioinformatics and Research Computing
http://web.wi.mit.edu/bio
• Training
 - Train Whitehead scientists on the use of bioinformatics and graphics tools
• Education
 - Teach courses about theory behind bioinformatics tools and graphics concepts
• Consulting
 - Advise scientists on ways of analyzing data and designing graphics images
• Collaboration
 - Use bioinformatics tools to analyze research data
 - Build new bioinformatics tools
 - Publish papers in the area of bioinformatics with Whitehead scientists
Introduction to Unix for Bioinformatics

• Why Unix?
• The Unix operating system
• Files and directories
• Ten required commands
• Input/output and command pipelines
• Supplementary information
 – X windows
 – EMBOSS
 – Shell scripts
Objectives

• Get around on a Unix computer

• Run bioinformatics programs “from the command line”

• Design potential ways to streamline data manipulation and analysis with scripts
Why Unix (for me)?

- **GEISHA**, the *Gallus gallus* (chicken) EST and in situ hybridization (ISH) database
Why Unix (in general)?

- Features: multiuser, multitasking, network-ready, robust
- Others use it – and you can benefit from them (open source projects, etc.)
- Good programming and I/O tools
- Scripts can be easily re-run
- Types: Linux, Solaris, Darwin, etc.
- Can be very inexpensive
Why Unix for Bioinformatics?

- Good for manipulating lots of data
- Many key tools written for Unix
- Don’t need to re-invent the wheel
- Unix-only packages: EMBOSS, BioPerl
- Unix tools with other OSs: Mac (OS X) & PC (Cygwin)
Unix O.S.

- **kernel**
 - managing work, memory, data, permissions
- **shell:**
 - working environment and command interpreter
 - link between kernel and user
 - choices: tcsh, etc.
 - History, filename completion [tab], wildcard (*)
 - Shell scripts to combine commands
- **filesystem**
 - ordinary files, directories, special files, pipes
WIBR BaRC systems

Training

hebrides
(Linux; 2 CPUs)
with storage and filesystem
/home/username

Research

storage and filesystem:
/home/username

barra (Linux; 4 CPUs)

Linux cluster: ~60 x 2 CPUs
Logging in

- ssh (secure shell; for encrypted data flow)
 \[\text{ssh } -l \text{ user_name hebrides.wi.mit.edu} \]

- `passwd` - to change your passwd

- logging out
 `logout`
Intro to files and directories

- Arranged in a branching tree
- Root of tree at “/” directory
- User elvis lives at /home/elvis (on ‘hebrides’)
- No spaces allowed
- Full vs. relative pathnames
 - At his home, Elvis’ home dir is “.”
 - To get to /home/gidget, go up and back down: (./gidget relative to /home/elvis)
- Anywhere, your home directory is “~”.
Intro to Unix commands

• Basic form is
 command_name options argument(s)
examples:
 mv old_data new_data
 blastall -p blastn -i myFile.seq -e 0.05
 -d nt -T T -o myFile.out

• Use history (↑, ↓, !num) to re-use commands
• Cursor commands: ^A(beginning) and ^E (end)
• To get a blank screen: clear
• For info about a command: man command
Key commands p. 1

• Where am I?

elvis@hebrides[1] % pwd
 /home/elvis

• What’s here?

elvis@hebrides [2] % ls
 A01.fa

elvis@hebrides [3] % ls -a
 . .cshrc A01.fa
 .. .twmrc

elvis@hebrides [4] % ls -l
 -rw-r--r-- 1 elvis musicians 1102 Jun 19 10:45 A01.fa
Key commands p. 2

- Change directories:
  ```
  cd ../gidget
  /home/gidget
  ```

- Make a new directory:
  ```
  mkdir spleen
  ```

- Remove a directory (needs to be empty first):
  ```
  rmdir spleen
  ```
File permissions

• Who should be reading, writing, and executing files?
• Three types of people: user (u), group (g), others (o)
• 9 choices (rwx or each type of person; default = 644)
 0 = no permission 4 = read only
 1 = execute only 5 = r + x
 2 = write only 6 = r + w
 3 = x + w 7 = r + w + x

• Setting permissions with chmod:
 chmod 744 myFile or chmod u+x myFile
 -rwxr--r-- 1 elvis musicians 110 Jun 19 10:45 myFile
 chmod 600 myFile
 -rw------- 1 elvis musicians 110 Jun 19 10:45 myFile
Key commands p.3

• Copying a file:
 `cp [OPTION]... SOURCE DEST`
 Ex: `cp mySeq seqs/mySeq`

• Moving or renaming a file:
 `mv [OPTION]... SOURCE DEST`
 Ex: `mv mySeq seqs/mySeq`

• Looking at a file (one screenful) with ‘more’
 `Ex: more mySeq`
 (Spacebar a screenful forward, <enter> a line forward; ^B a screenful back; q to exit)
Key commands (summary)

ssh mkdir cp
pwd cd mv
ls chmod more
rm

To get more info (syntax, options, etc.):
man command
Input/output redirection

- Defaults: stdin = keyboard; stdout = screen
- To modify,
 `command < inputFile > outputFile`
- input example
 `sort < my_gene_list`
- output examples
 `ls > file_name` (make new file)
 `ls >> file_name` (append to file)
 `ls foo >& file_name` (stderr too)
Pipes (command pipelines)

• In a pipeline of commands, the output of one command is used as input for the next

• Link commands with the “pipe” symbol: |
 ex1: `ls *.fa | wc -l`
 ex2: `grep ‘>’ *.fa | sort`
Managing jobs and processes

• Run a process in the foreground (fg):
 \textit{command}

• Run a process in the background (bg):
 \textit{command} &

• Change a process (fg to bg):
 1. suspend the process: \textasciicircum z
 2. change to background: \texttt{bg}
Managing jobs and processes (cont.)

- See what’s running (ps)

```
elvis@hebrides[1] % ps -u user_name
       PID  TTY      TIME    CMD
      22541 pts/22   0:00    perl
      22060 pts/22   0:00    tcsh
```

- Stop a process:

```
kill PID
```

ex: kill 22541
Text editors

- emacs, vi (powerful but unfriendly at first); pico

- nedit, xemacs (easier; X windows only)

- desktop text editors (BBEdit; TextPad) + sftp
Supplementary information
X Windows

• method for running Unix graphical applications
• still allows for command-line operation
• see help pages for getting started
• some applications with extensive graphics:
 – EMB OSS
 – R
 – Matlab
 – ClustalX + njplot
• Requires a fast network/internet connection
EMBOSS

• The European Molecular Biology Open Software Suite
• List of programs at http://emboss.sourceforge.net/apps/
• ex: Smith-Waterman local alignment (water)
• Programs have two formats: interactive and one-line
• Conducive to embedding in scripts for batch analysis
• Traditionally command-line but web interfaces are becoming available
EMBOSS examples

- needle: Needleman-Wunsch global alignment
 `needle seq1.fa seq2.fa -auto -outfile seq1.seq2.needle`

- dreg: regular expression search of a nucleotide sequence
 `dreg -sequence mySeq.tfa -pattern GGAT[TC]TAA -outfile mySeq_dreg.txt`
Shell script example

#!/bin/csh
alignSeqs.csh: align a pair of sequences

Check to make sure you get two arguments (sequence files)
if ($#argv != 2) then
 echo "Usage: $0 seq1 seq2"; exit 1
endif

Local alignment
set localOut=$1.$2.water.out
water $1 $2 -auto -outfile $localOut
echo Wrote local alignment to $localOut

Global alignment
set globalOut=$1.$2.needle.out
needle $1 $2 -auto -outfile $globalOut
echo Wrote global alignment to $globalOut
Some other helpful commands

- **rm**: remove (delete) files
 ex: `rm myOldfile`

- **cat**: concatenate files
 ex: `cat *.seq > all_seq.tfa`

- **alias**: create your own command shortcuts
 ex: `alias myblastx blastall -p blastx -d nr`

- **find**: find a lost file (ex: look for files with the .fa extension)
 ex: `find . -name *.fa`

- **diff**; **comm**: compare files or lists

- **sort**: sort (alphabetically/numerically) lines in a file

- **uniq**: get list of non-redundant lines

- **grep**: search a file for a text pattern

- **tar**: combine files together for storage or transfer

- **wget**: download files from the web

- **gzip** & **gunzip**: compress or uncompress a file
Summary

• Why Unix?
• The Unix operating system
• Files and directories
• Ten required commands
• Input/output and command pipelines
• X windows, EMBOSS, and shell scripts
Exercises

Command-line interface:
• move and uncompress sequence files
• create a BLAST database and search it
• extract sequences from the database

Graphical (X Windows) interface:
• nedit, clustalx, njplot
• Image format conversion (ps2pdf, display)