

Relational Databases for Biologists: Efficiently Managing and Manipulating Your Data

Session 1: Data Conceptualization and Database Design

George Bell, Ph.D. WIBR Bioinformatics and Research Computing

Relational Databases for Biologists © Whitehead Institute, 2006

What is a Database?

- · A collection of data
- A set of rules to manipulate data
- A method to mold information into knowledge
- Is a phonebook a database?
 - Is a phonebook with a human user a database?

Babbitt, S.	38 William St., Cambridge	555-1212
Baggins, F.	109 Auburn Ct., Boston	555-1234
Bayford, A.	1154 William St., Newton	555-8934

Relational Databases for Biologists © Whitehead Institute, 2006

Why are Databases Important?

- Data -> information -> knowledge
- · Efficient manipulation of large data sets
- Integration of multiple data sources
- Adding crosslinks/references to other resources

Relational Databases for Biologists © Whitehead Institute, 2006

Why is a Database Useful?

- If database systems simply manipulate data, why not use existing file system and spreadsheet mechanisms?
- · "Baggins" Telephone No. Lookup:
 - Human: Look for B, then A, then G \dots
 - Unix: grep Baggins boston_directory.txt
 - DB: SELECT * FROM directory WHERE lastName="Baggins"

Babbitt, S.	38 William St., Cambridge	555-1212
Baggins, F.	109 Auburn Ct., Boston	555-1234
Bayford, A.	1154 William St., Newton	555-8934

Relational Databases for Biologists © Whitehead Institute, 2006

What is the Advantage of a Database?

- Find all last names that contain "th" but do not have street address that begin with "th".
 - Human: a lot of careful reading....
 - Unix: Write a directory parser and a filter.
 - DB: SELECT lastName FROM directory WHERE lastName LIKE "%th%" AND street NOT LIKE "Th%"

Relational Databases for Biologists © Whitehead Institute, 2006

Why Biological Databases?

- To access and manipulate lots of data
- To manage experimental results
- · To improve search sensitivity
- · To improve search efficiency
- To merge multiple data sets

Microarrays: a practical application

The typical Excel spreadsheet of microarray data

Affy	lung	heart	gall_bladder	pancreas	testis
92632_at	20	20	20	20	20
94246_at	20	71	122	20	20
93645_at	216	249	152	179	226
98132_at	135	236	157	143	145

 Find all of the genes that have at least 2 fold higher expression in the gall bladder compared to the testis, and sort by decreasing RNA abundance in the heart

Relational Databases for Biologists © Whitehead Institute, 2006

Course Goals

- Conceptualize data in terms of relations (database tables)
- · Design relational databases
- Use SQL commands to extract data from (mine) databases
- Use SQL commands to build and modify databases

Relational Databases for Biologists © Whitehead Institute, 2006

Session Outline

- Session 1
 - Database background and design
- Session 2
 - SQL to data mine a database
- Session 3
 - SQL to create and modify a database
- · Hands-on sessions after each lecture

Relational Databases for Biologists © Whitehead Institute, 2006

Supplemental Information

- Links to class information: http://jura.wi.mit.edu/bio/education/ bioinfo2006/db4bio/
- MySQL documentation: http://dev.mysql.com/doc/
- · Books:
 - MySQL Paul DuBois
 - and many others

Relational Databases for Biologists © Whitehead Institute, 2006

Flat vs. Relational Databases

- Flat file databases use identity tags or delimited formats to describe data and categories without relating data to each other
 - Most biological databases are flat files and require specific parsers and filters
- Relational databases store data in terms of their relationship to each other
 - A simple query language can extract information from any database

Relational Databases for Biologists © Whitehead Institute, 2006

Fasta format sequence file

>gji[2137523]pir||I59968 MHC class I H2-K-b-alpha-2 cell surface glycoprotein - mouse (fragment) AHTIQVISGCEVSDBGLLRGYQGYAYDGCDYIALNEDLKTWTAADMAALITKHKWEQAGEAERLRAYLE GTCVEWLRRYLKNONATLRT

>g||23954197|ref||XP_193866.1| histocompatibility 2, K region [Mus musculus]
MSRGRGGWSRRGPSIGSGRHRKPRAMSRYSEWTLETLLGYYNGSKGSHTIQVISGCEVGSDGRLLRGYQ
GYAYDGGOYJUA NEDLKTWTADAMALITHKHWEGAGEAERLRAYLEGTOVEWLRRYLKNGNATLLRTDS
PRAHYTHHSRPEDKYTLKGWALGFYRADITTWOLNGEELIGDMELVETRPAGDGTFGKWASVVYPLOKE
GYYTCHYYHGGLPPLTLRWEPSYTVSNMATVALVU,VLOAANITGAVAFUNKHMSRTNTGGKGGGVALA

>pij2992392[rff]XP_207061.1] similar to histocompatibility 2, K region [Mus musculus]
MYPCTILLILLAALAFTGTRAGPHSLRYFVTAVSRPGLGEPRYMEVGYVDDTEFVRFDSDAENPRYEPRA
RWHEGCEPPEVMERETGYAKGMOSFRYDURTIL.GYYMGNGGGSWITUSIGSCEVSDSGRLLRGYQQYAYD
GCDYALMEDLKTWTAADMAALITKHKWEAGAGEAER.RAYLEGTCVEWLRRYLKNGNATLLRTDSPKAHV
HISHSPENDKTURCWALGFYFADIT.TWQLNGEELGDMELTETRAGDGTFGKWASVWYHCKGEGYYTC
HYYHGGLFEPLTLRWEPPPSTVSMMATVAVLVULGAAIVTGAVVAFVMKMRRRNTGGKGGDYALAPGSQT
SOLSIDDCKWMHOPHSLA

GenBank format sequence file Locie NH_20137 BALDES SERVICES SERV

LTSTQVKIMFQMRHYKCKRQRQDESLEMATYPLPPRKVAVPVLVRNGKPCFEGSQ APYGITVSPYSYSTYYSAYGVSYGVGYTGVLTP" ORIGIN

Relational Databases for Biologists © Whitehead Institute, 2006

The Relational Database

- Data is composed of sets of tables and links
- Structured Query Language (SQL) to query the database
- Database management system (DBMS) to manage the data

Relational Databases for Biologists © Whitehead Institute, 2006

DBMS ACID properties

- · ACID properties/model
 - Atomicity: "All or nothing" transactions
 - Consistency: Only valid data can be input
 - Isolation: Multiple user independence
 - Durability: Recovery mechanisms for system failures

Relational Databases for Biologists © Whitehead Institute, 2006

Selected DBMSs

- MySQL
 - "The world's most popular open source database", probably for biology too
 - Free; open source; small application; quick to learn
 - DBMS for this class
- PostgreSQL
 - "The world's most advanced open source database"
- Free; open source; somewhat larger application
- Oracle
 - "The worlds #1 database"
 - A lot more features but takes longer to learn
 - Expensive (but of course, many feel it's worth it)
- All three are great choices and have the same core SQL functionality.

Relational Databases for Biologists ${\mathbb C}$ Whitehead Institute, 2006

Data Conceptualization

Data and Links (For a Phonebook)

Data Structure

- Data stored in tables with multiple columns ("attributes").
- Each record is represented by a row (a "tuple")

Relational Database Specifics

- · Tables are relations
 - You perform operations on the tables
- · No two tuples (rows) should be identical
- · Each attribute for a tuple has only one value
- · Tuples within a table are unordered
- Each tuple is uniquely Identified by a primary key

Relational Databases for Biologists © Whitehead Institute, 2006

Primary Keys

- Primary Identifiers (IDs)
- Set of attributes that uniquely define a single, specific tuple (row)
- · Must be absolutely unique
 - -SSN?
 - Phone Number?
 - ISBN ?

First Name	Last Name	SSN
Frodo	Baggins	332-97-0123
Frodo	Binks	398-76-5327
Maro	Baggins	215-01-3965

Relational Databases for Biologists © Whitehead Institute, 2006

Find the Keys

First Name	Last Name	SSN	Phone Number	Address
Frodo	Baggins	321-45-7891	123-4567	29 Hobbitville
Aragon	Elf-Wantabe	215-87-7458	258-6109	105 Imladris
Boromir	Ringer	105-91-0124	424-9706	31 Hobbitville
Bilbo	Baggins	198-02-2144	424-9706	29 Hobbitville
Legolas	Elf	330-78-4230	555-1234	135 Imladris

Relational Databases for Biologists © Whitehead Institute, 2006

Design Principles

- Conceptualize the data elements (entities)
- · Identify how the data is related
- · Make it simple
- Avoid redundancy
- Make sure the design accurately describes the data!

Relational Databases for Biologists $\ensuremath{\mathbb{Q}}$ Whitehead Institute, 2006

Entity-Relationship Diagrams • Expression of a database table design Attributes Entity Relationship Relationship Relationship Address Entity Relationship Relationship

Steps to Build an E-R Diagram

- · Identify data attributes
- Conceptualize entities by grouping related attributes
- · Identify relationships/links
- · Draw preliminary E-R diagram
- · Add cardinalities and references

Relational Databases for Biologists © Whitehead Institute, 2006

Developing an E-R Diagram

• Convert a GenBank File into an E RDiagram

```
INCOME

INCOMENS

INCOMENS
```

Identify Attributes

- Locus, Definition, Accession, Version, Source Organism
- · Authors, Title, Journal, Medline Id, PubMed Id
- Protein Name, Protein Description, Protein Id, Protein Translation, Locus Id, GI
- A count, C count, G count, T count, Sequence

Relational Databases for Biologists © Whitehead Institute, 2006

Identify Entities by Grouping

- Gene
 - Locus, Definition, Accession, Version, Source Organism
- · References
 - Authors, Title, Journal, Medline Id, PubMed Id
- Features
 - Protein Name, Protein Description, Protein Id, Protein Translation, Locus Id, GI
- · Sequence Information
 - A count, C count, G count, T count, Sequence

Relational Databases for Biologists ${\hbox{\o }}$ Whitehead Institute, 2006

Apply Design Principles Faithful, non redundant Simple element choice Peatures Features Gene Gene

Summary

- · Databases provide ACID
- Databases are composed of tables (relations)
- Relations are entities that have attributes and tuples
- Databases can be designed from E R diagrams that are easily converted to tables
- Primary keys uniquely identify individual tuples and represent links between tables

Relational Databases for Biologists © Whitehead Institute, 2006

Next class

- Using structured query language (SQL) to data mine databases
- SELECT a FROM b WHERE c = d

Database design example:

Design the db4bio database

Relational Databases for Biologists © Whitehead Institute, 2006

Build Your Own E-R Diagram

 Express the following annotated microarray data set as an E-R diagram

 Affyld
 GenBankld
 Name
 Description LocusLinkId LocusDescr NT. Ref Seq. Al. Ref Seq. Lil
 U95-32123_et
 L02870
 COL7A1 Collagen GBE1
 1294
 Collagen GIucan
 NM_000094 NP_000085 \|\text{NP_000149 \|\text{N

Relational Databases for Biologists ${\mathbb C}$ Whitehead Institute, 2006

Identify Entities by Grouping

- · Gene Descriptions
 - Name, Description, GenBank
- RefSeqs
 - NT RefSeq, AA RefSeq
- Ontologies
- GO Accession, GO Terms
- LocusLinks
- · Unigenes
- Data
- Sample Source, Level
- · Targets
 - Affy ID, Experiment Number, Species

