Analysis of Microarray Data
Lecture 2:
Differential Expression, Filtering and Clustering

George Bell, Ph.D.
Senior Bioinformatics Scientist
Bioinformatics and Research Computing
Whitehead Institute

Outline
• Review
• Measuring differential expression
• Multiple hypothesis testing
• Gene filtering
• Measuring distance between profiles
• Clustering methods

Review
• Assumption: Expression microarrays measure specific mRNA levels
• Why perform the experiment?
• What best design addresses your goals?
• Normalize to increase power of comparisons.
• Precision doesn’t necessarily indicate analysis success.
• Does your analysis pipeline make sense biologically and statistically?

Caveats and limitations
• Are the probes on the chip for a specific transcript? gene?
• Are mRNA levels correlated with transcription activity?
• Is transcriptional regulation important?
• Are mRNA levels correlated with protein activity?
• Is this the best technology to answer your question(s)?

Measuring differential expression
• One common goal is to rank all the genes on a chip in order of evidence for differential expression
• Ways to score genes:
 – Fold change
 – T-statistic p-value
 – Another statistic (nonparametric, etc.)
 – A combination of several scores

Fold change
• Advantage: Fold change makes sense to biologists
 Fold change = \frac{\text{expression value in sample 1}}{\text{expression value in sample 2}}
• What cutoff should be used?
• Should it be the same for all genes?
• Disadvantages:
 – Only mean values – not variability – are considered
 – Genes with large variances are more likely to make the cutoff just because of noise
Hypothesis testing

- We may want to test ...
 - Is the expression of my gene different in a set in one condition compared to another condition?
 - How big is the difference?
 - Is the mean of one set of values different from the mean of another set of values?
 - If we say “yes”, how much confidence do we have that the means are truly different?
- Assumptions:
 - Data are normally distributed
 - Samples are randomly chosen

Hypothesis testing with the t-test

- Considers mean values and variability
- Equation for the t-statistic in the Welch test:
 \[t = \frac{\bar{x}_r - \bar{x}_g}{\sqrt{\frac{s_r^2}{n_r} + \frac{s_g^2}{n_g}}} \]
- ... and then a p-value is calculated
- Assumptions:
 - Data are normally distributed
 - Samples are randomly chosen
 - Data sets to compare
 - Standard deviation
 - No. of measurements
- Disadvantages:
 - Genes with small variances are more likely to make the cutoff
 - Works best with larger data sets than one usually has

Flavors of the t-test

- Are we only considering up-regulated or down-regulated genes, or both?
 - If both, perform a 2-tailed test
- Can we assume that the variance of the gene is similar in both samples?
 - Yes => Homoscedastic (the standard t-test)
 - No => Heteroscedastic (Welch’s test)
- Moderated t-tests: pool data for many genes
 - Significance Analysis of Microarrays (SAM)
 - Limma (Bioconductor)

ANOVA

- Analysis of variance – like a multidimensional t-test
- Measure effect of multiple treatments and their interactions
- A thoughtful ANOVA design can help answer several questions with one analysis
- ANOVA can also analyze factors that should be controlled – just to confirm absence of confounding effects
- ANOVA generally identifies genes that are influenced by some factor – but then post-hoc tests must be run to identify the specific nature of the influence
 - Ex: t-tests between all pairs of data

Combining p-values and fold changes

- What’s important biologically?
 - How significant is the difference?
 - How large is the difference?
- Both amounts can be used to identify genes.
- What cutoffs to use?
- How many genes should be selected?
- Where are your positive controls?
- Moderated t-tests do something like this.

Volcano plots
Differential expression - summary

- Multiple methods can produce lists of differentially expressed genes
- Which ways make most sense biologically and statistically?
- Be aware of multiple hypothesis testing
- Looking at all the data: volcano plots
- Where do your positive controls fit in?
- There may be no single best way

Multiple hypothesis testing

- We need both sensitivity and specificity:
 - Sensitivity: probability of successfully identifying a real effect
 - Specificity: probability of successfully rejecting a nonexistent effect
- These are inversely related.
- The problem
 - The number of false positives greatly increases as one performs more and more t-tests
 - How seriously do you want to limit false positives?

Multiple hypothesis testing

- We need both sensitivity and specificity:
 - Sensitivity: probability of successfully identifying a real effect
 - Specificity: probability of successfully rejecting a nonexistent effect
- These are inversely related.
- The problem
 - The number of false positives greatly increases as one performs more and more t-tests
 - How seriously do you want to limit false positives?

Why correct for multiple hypothesis testing?

<table>
<thead>
<tr>
<th>Number of genes tested (N)</th>
<th>FP incidence (p < 0.05)</th>
<th>Probability of >= 1 FPs 100(1 - 0.95^N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 / 20</td>
<td>5%</td>
</tr>
<tr>
<td>10</td>
<td>10 / 20</td>
<td>40.1%</td>
</tr>
<tr>
<td>100</td>
<td>100 / 20</td>
<td>99.4%</td>
</tr>
</tbody>
</table>

FP = false positive

Correcting for multiple hypothesis testing

- If false positives are not tolerated
 - Perform Bonferroni correction
 - If you perform 100 t-tests, multiply each p-value by 100 to get corrected (adjusted) values
 - p = 0.0005 \(\Rightarrow \) p = 0.05
- If false positives can be tolerated
 - Use False Discovery Rate (FDR)
 - If you can tolerate 15% false positives, set FDR to 0.15 and calculate what p-value to use
 - FDR method is less conservative than Bonferroni and usually more appropriate for microarrays.

Performing a FDR correction

- Sort list of p-values in increasing order
- Starting at the bottom row, corrected p-value = the minimum between
 1: raw p-value * (n/rank)
 2: corrected p-value below
 - n is the number of tests
 - rank is the position in the sorted list
- Example: a microarray assays 5 genes for differential expression

<table>
<thead>
<tr>
<th>Gene</th>
<th>Rank</th>
<th>Raw p-value</th>
<th>Formula</th>
<th>Corrected p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>0.01</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
<td>0.03</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>0.1</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Gene filtering

- An infinite number of methods can select “interesting” genes
- Not all genes on the chip need consideration: any meaningful selection is possible
- Filtering by function: using GO or other annotations
- Often the major question: How many genes to choose for further analysis?
Measuring distance between profiles

- Distance metric is most important choice when comparing genes and/or experiments
- What are you trying to do?

Common distance metrics

- Pearson correlation
 - Measures the difference in the shape of two curves
 - Modification: absolute correlation
- Euclidean distance: multidimensional Pythagorean Theorem
 - Measures the distance between two curves
- Nonparametric or Rank Correlation
 - Similar to the Pearson correlation but data values are replaced with their ranks
 - Ex: Spearman Rank, Kendall’s Tau
 - More robust (against outliers) than other methods

Clustering and segmenting

- Goal: organize a set of data to show relationships between data elements
- With microarray analysis: genes and/or chips
- Most data does not inherently exist in clusters
- Clustering vs segmenting
- Most effective with optimal quantity of data
- Interpretation of data in obvious clusters: is it filtered?

Clustering basics

- How to start:
 - One big cluster (divisive)
 - n clusters for n objects (agglomerative)
 - K clusters, where k is some pre-defined number
- Hierarchical agglomerative clustering
 - Popular method producing a tree showing relationships between objects (genes or chips)
 - Start by creating an all vs. all distance matrix
 - Fuse closest objects, then…

Representing groups of objects during clustering

How is distance measured to a cluster of objects?

- Single linkage (a)
 - minimum distance
- Complete linkage (b)
 - maximum distance
- Average linkage (c)
 - average distance
- Centroid linkage (d)
 - distance to “centroid” of group

Representing clustered data

- Hierarchical clustering produces a dendrogram showing relationships between objects
- Are the data really hierarchical?
- Order of leaves $2^N - 2$
- How can objects be partitioned into groups?
 - k-means clustering
 - self-organizing maps
 - How many clusters (k)?
- Original distance matrix may be more informative
Summary

• Determining differential expression:
 – t-test, fold change, etc.
 – methods may be used in combination
• Correcting for multiple hypothesis testing
 – Bonferroni, False Discovery Rate, etc.
• Distance metrics: select carefully
• Clustering/segmentation types and methods
 – hierarchical, k-means, etc.; linkage types
 – Which protocol is best for your experiment?

References

Microarray tools

• Course page:
• BaRC analysis tools:
 – http://jura.wi.mit.edu/bioc/tools/
• Bioconductor (R statistics package)
 – http://www.bioconductor.org/
• Excel
• Many commercial and open source packages
• Cluster 3.0 and JavaTreeView

Selecting a large matrix in Excel

1. Select the bottom right cell of the desired matrix
2. Control - Shift - Up arrow Select everything above the original cell
3. Control - Shift - Left arrow Select everything to the left of the original cell
4. Shift - Down arrow Move down one row
5. Shift - Right arrow Move to the right one column

Exercise 2: Excel functions

• LOG
• IF
• TTEST
• CONCATENATE
• VLOOKUP
• MIN
• RANK

Exercise 2 - To do

• Use t-test to identify differentially expressed genes
• Use the "Absent/Present" calls from the Affymetrix algorithm to flag genes with questionable expression levels
• List all the gene IDs for those that meet your significance threshold (such as p < 0.05) and are present in at least one sample.
• Gather expression data for these genes
• Cluster this selected data (multiple methods)
• Visualize clustered data as a heatmap