

Getting To Know Your Protein

Comparative Protein Analysis:

Part II. Protein Domain Identification

& Classification Robert Latek, PhD Sr. Bioinformatics Scientist Whitehead Institute for Biomedical Research

Comparative Protein Analysis

Part I. :

- Phylogenetic Trees and Multiple Sequence Alignments are important tools to understand global relationships between sequences.
- Tree Building Tools with Different Algorithms
- http://bioweb.pasteur.fr/seqanal/phylogeny/intro-uk.html
 http://evolution.genetics.washington.edu/phylip/software.xref.html
- Tree Reliability
- Bootstrapping 1. Randomly re-sample MSA columns to produce a random alignment (equal length as original MSA), 2. Build tree based on random alignment, 3. Predicted branches are significant if they occur in ~ >70% of the trees from multiple, randomized alignments.
- Use a several tree building algorithms to determine whether they produce similar trees as the original.

WIBR Bioinformatics Courses, © Whitehead Institute, 2005

Comparative Protein Analysis

- Part II. :
 - How do you identify sequence relationships that are restricted to localized regions?
 - Can you apply phylogenetic trees and MSAs to only sub-regions of sequences?
 - How do you apply what you know about a group of sequences to finding additional, related sequences?
 - What can the relationship between your sequences and previously discovered ones tell you about their function?
- Assigning sequences to Protein Families

WIBR Bioinformatics Courses, © Whitehead Institute, 2005

Syllabus

• Protein Families

- Identifying Protein Domains
- Family Databases & Searches
- Searching for Family Members
 - Pattern Searches
 - Patscan
 - Profile Searches
 - PSI-BLAST/HMMER2

WIBR Bioinformatics Courses, © Whitehead Institute, 2005

Proteins As Modules

- Proteins are derived from a limited number of basic building blocks (Domains)
- Evolution has shuffled these modules giving rise to a diverse repertoire of protein sequences
- As a result, proteins can share a global or local relationship

WIBR Bioinformatics Courses, © Whitehead Institute, 2005

5

Protein Domains

Protein Families

- Protein Family a group of proteins that share a common function and/or structure, that are potentially derived from a common ancestor (set of homologous proteins)
- Characterizing a Family Compare the sequence and ٠ structure patterns of the family members to reveal shared characteristics that potentially describe common biological properties
- Motif/Domain sequence and/or structure patterns common to protein family members (trait/feature/characteristic)

WIBR Bioinformatics Courses, © Whitehead Institute, 2005

Protein Families

Creating Protein Families

- Use domains to identify family members
 - Use a sequence to search a database and characterize a pattern/profile
 - Use a specific pattern/profile to identify homologous sequences (family members)

Family Database Resources

- Curated Databases*
 - Proteins are placed into families with which they share a specific sequence pattern
- Clustering Databases* - Sequence similarity-based without the prior knowledge of specific patterns
- Derived Databases*
 - Pool other databases into one central resource
- Search and Browse
 - InterPro http://www.ebi.ac.uk/interpro/

WIBR Bioinformatics Courses, © Whitehead Institute, 2005

*(Higgins, 2000) 10

Curated Family Databases

- Pfam (http://pfam.wustl.edu) ** •
 - Uses manually constructed seed alignments and PSSM to automatically extract domains - db of protein families and corresponding profile-HMMs of prototypic domains
 - Searches report e-value and bits score
- Prosite (http://www.expasy.ch/tools/scanprosite/)
- Hit or Miss -> no stats
- PRINTS (http://www.bioinf.man.ac.uk/fingerPRINTScan/)

Clustering Family Databases

- Search a database against itself and cluster similar sequences into families
- ProDom (http://prodes.toulouse.inra.fr/prodom/current/html/home.php) Searchable against MSAs and consensus sequences
- Protomap (http://protomap.cornell.edu/)
 - Swiss-Prot based and provides a tree-like view of clustering

	1993) — (56288	1111				
			15.57	1/1/2	120411422	1471	12020400	
	_							
quence	vith F	roDom d	omains,	using N	lultalin			
BEGIN I	ND							
580 6	83	Saberit Qu	ery)					
497 5	72	Submit Qu	ery					
263 3	26	Submit Qu	ery					
	BEGIN E 580 6 497 5	BEGIN END 580 683 497 572	BEGIN END 580 683 Sabmit Qu 497 572 Sabmit Qu	BEGIN END 580 683 Submit Query 497 572 Submit Query	BEGIN END 580 663 Satemit Query 497 572 Satemit Query	580 683 Sabmit Query 497 572 Sabmit Query	BEGIN END 580 683 Submit Query 497 572 Submit Query	BEGIN END 550 683 Sabmit Quiry 497 572 Sabmit Quiry

Derived Family Databases

- · Databases that utilize protein family groupings provided by other resources
- Blocks Search and Make (http://blocks.fhcrc.org/blocks/)
- Uses Protomap system for finding blocks that are indicative of a protein family (GIBBS/MOTIF)
- **Proclass** (http://pir.georgetown.edu/gfserver/proclass.html)
- Combines families from several resources using a neural network-based system (relationships)
- MEME (http://meme.sdsc.edu/meme/website/intro.html)

Name	Combined p-value	M	otifs												
meme.seqs.1578	2.35e-67	-						3	5 🛑					3	_
SCALE		1	25	1 50	1 75	100	125	150	175	1 200	1 225	1 250	1 275	1 300	32

WIBR Bioinformatics Courses, © Whitehead Institute, 2005

13

15

17

Syllabus

- Protein Families
 - Identifying Protein Domains
 - Family Databases & Searches
- Searching for Family Members
 - Pattern Searches
 - Patscan
 - Profile Searches
 - PSI-BLAST/HMMER2
 WIBR Bioinformatics Courses, © Whitehead Institute, 2005

14

16

Searching Databases By Family

- BLAST searches provide a great deal of information, but it is difficult to select out the important sequences (listed by score, not family)
- Family searches can give an immediate indication of a protein's classification/function
- Use Family Database search tools to identify domains and family members

WIBR Bioinformatics Courses, © Whitehead Institute, 2005

Patterns & Profiles

- Techniques for searching sequence databases to uncover common domains/motifs of biological significance that categorize a protein into a family
- **Pattern** a deterministic syntax that describes multiple combinations of possible residues within a protein string
- **Profile** probabilistic generalizations that assign to every segment position, a probability that each of the 20 aa will occur

WIBR Bioinformatics Courses, © Whitehead Institute, 2005

Pattern Discovery Algorithms

- Pattern Driven Methods
 - Enumerate all possible patterns in solution space and try matching them to a set of sequences

Pattern Discovery Algorithms

- Sequence Driven Methods
 - Build up a pattern by pair-wise comparisons of input sequences, storing positions in common, removing positions that are different

18

Pattern Building

- Find patterns like "pos1 xx pos2 xxxx pos3"
 - Definition of a non-contiguous motif

Define/Search A Motif http://us.expasy.org/tools/scanprosite/ WIBR Bioinformatics Courses, © Whitehead Institute, 2005

19

21

23

Pattern Properties

• Specification

 a single residue K, set of residues (KPR), exclusion {KPR}, wildcards X, varying lengths x(3,6) -> variable gap lengths

- General Syntax

 C-x(2,4)-C-x(3)-[LIVMFYWC]-x(8)-H-x(3,5)-H

 Patscan Syntax
 - http://jura.wi.mit.edu/bio/education/bioinfo/homework/hw8/patscan.txt - C 2...4 C 3...3 any(LIVMFYWC) 8...8 H 3...5 H
- Pattern Database Searching
 - %scan_for_matches -p pattern_file < nr > output_file

WIBR Bioinformatics Courses, © Whitehead Institute, 2005 20

Sequence Pattern Concerns

- Pattern descriptors must allow for approximate matching by defining an acceptable distance between a pattern and a potential hit
 - Weigh the sensitivity and specificity of a pattern
- What is the likelihood that a pattern would randomly occur?

WIBR Bioinformatics Courses, © Whitehead Institute, 2005

Sequence Profiles

- **Consensus** mathematical probability that a particular aa will be located at a given position
- · Probabilistic pattern constructed from a MSA
- Opportunity to assign penalties for insertions and deletions, but not well suited for variable gap lengths
- **PSSM** (Position Specific Scoring Matrix)
 - Represents the sequence profile in tabular form
 - Columns of weights for every aa corresponding to each column of a MSA

WIBR Bioinformatics Courses, © Whitehead Institute, 2005

22

Profile Discovery/Analysis

- Perform global MSA on group of sequences
- Move highly conserved regions to smaller MSAs
- Generate scoring table with log odds scores – Each column is independent
 - Average Method: profile matrix values are weighted by the proportion of each amino acid in each column of MSA
 - Evolutionary Method: calculate the evolutionary distance (Dayhoff model) required to generate the observed amino acid distribution

WIBR Bioinformatics Courses, © Whitehead Institute, 2005

PSSM Properties

- Score-based sequence representations for searching databases
- Goal
 - Limit the diversity in each column to improve reliability
- Problems
 - Differing length gaps between conserved positions (unlike patterns)

WIBR Bioinformatics Courses, © Whitehead Institute, 2005

25

27

29

PSI-BLAST Implementation

PSI-BLAST

sequences

http://www.ncbi.nlm.nih.gov/BLAST/ - Start with a sequence, BLAST it, align select results to query sequence, estimate a profile with the MSA, search DB with the profile - constructs PSSM - Iterate until process stabilizes

Focus on domains, not entire

 Greatly improves sensitivity (but may affect specificity) WIBR Bioinformatics Courses, © Whitehead Institute, 2005

26

PSI-BLAST Sample Output

Sequences with E-value WORSE than threshold

WIBR Bioinformatics Courses, © Whitehead Institute, 2005

HMM Building

- Hidden Markov Models are Statistical methods that consider all the possible combinations of matches, mismatches, and gaps to generate a consensus (Higgins, 2000)
- Sequence ordering and alignments are not necessary at the onset (but in many cases alignments are recommended)
- Ideally use at least 20 sequences in the training set to build a model
- Calibration prevents over-fitting training set (i.e. Ala scan)
- Generate a model (profile/PSSM), then search a database with it

WIBR Bioinformatics Courses, © Whitehead Institute, 2005

28

HMM Implementation

• HMMER2 (http://hmmer.wustl.edu/)

- Determine which sequences to include/exclude
- Perform alignment, select domain, excise ends,
- manually refine MSA (pre-aligned sequences better) Build profile
- %hmmbuild [-options] <hmmfile output> <alignment file> Calibrate profile (re-calc. Parameters by making a
- random db) • %hmmcalibrate [-options] <hmmfile>

- Search database

• [%hmmsearch [-options] <hmmfile> <database file> > out

- Hmmsearch returns evalues and bits scores
- · Repeat process with selected results
 - Unfortunately need to extract sequences from the results and manually perform MSA before beginning next round of iteration

HMMER2 Output

	001 HHMI/Washington U er the GNU General Public	niversity School of Medicin
rieely distributed und	er the GINU General Public	: License (GPL)
HMM file:	pfam_had.hmm [Hydro	lase
Sequence database:	/cluster/db0/Data/nr	
per-sequence score cut	off: [none]	
per-domain score cuto	ff: [none]	
per-sequence Eval cuto	off: <= 10	
per-domain Eval cutof	f: [none]	
Ouerv HMM: Hydro	lase	
Accession: PE00707		
Description: haloacid	dehalogenase-like hydrolas	e
	brated: E-values are empiri	
1		
Scores for complete se	equences (score includes all	domains):
Sequence	Description	Score E-value N

requence	Description S	Score E-value N				
il16131263 reflNP_417844.1	phosphoglycolat	168.4	2.9e-45	1		
il24114648lrefINP_709158.11	phosphoglycolat	167.8	4.2e-45	1		
il15803888lrefINP_289924.11	phosphoglycolat	167.8	4.2e-45	1		
il26249979lreflNP_756019.11	Phosphoglycolat	166.4	1.1e-44	1		

Patterns vs. Profiles

• Patterns

- Easy to understand (human-readable)
- Account for different length gaps
- Profiles
 - Sensitivity, better signal to noise ratio
 - Teachable

WIBR Bioinformatics Courses, © Whitehead Institute, 2005

31

33

Domain ID & Searching

WIBR Bioinformatics Courses, © Whitehead Institute, 2005

Exercises

- Use PFAM to identify domains within your sequence
- Scan your sequences with ProSite to find a pattern to represent the domain
- Use the ProSite pattern to search the non-redundant db
- Use PSI-BLAST to build a sequence profile and search the non-redundant db

WIBR Bioinformatics Courses, © Whitehead Institute, 2005

References

- Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. Andreas D. Baxevanis and B.F. Francis Ouellete. Wiley Interscience, 2001.
- Bioinformatics: Sequence, structure, and databanks. Des Higgins and Willie Taylor. Oxford University Press, 2000.

WIBR Bioinformatics Courses, © Whitehead Institute, 2005

34

32