Bioinformatics

Proteins III. -Comparing and Predicting Protein Structures

Robert Latek, Ph.D. Bioinformatics, Biocomputing

WIBR Bioinformatics Course, © Whitehead Institute, 2002

Proteins I.-III. - Syllabus

- Proteins I.
 - Phylogenetic Trees
 - Multiple Sequence Alignments
- Proteins II.
 - Searching for Homologous Sequences
 - Working with Protein Structure Information
- Proteins III.
 - Comparing Protein Structures
 - Predicting Protein Structures

Last Week

- Searching for Homologous Sequences
 - Patterns
 - Profiles
 - Database Searches
- Working with Protein Structure Information
 - Coordinate Files, Classification, Databases

Structure Databases

- SCOP: Structural Classification Of Proteins
 - Hierarchical levels to reflect evolutionary and structural relationships
 - <u>http://scop.mrc-lmb.cam.ac.uk/scop</u>
- CATH: Classification by Class, Architecture, Topology, and Homology
 - http://www.biochem.ucl.ac.uk/bsm/cath/
- FSSP: Fold classification based on Structure-Structure alignment of Proteins
 - DALI pair-wise alignments
 - <u>http://www2.embl-ebi.ac.uk/dali/fssp/fssp.html</u>
- SARF: Spatial Arrangement of Backbone Fragments
 - <u>http://123d.ncifcrf.gov/</u>

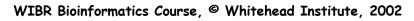
Proteins II. - Syllabus

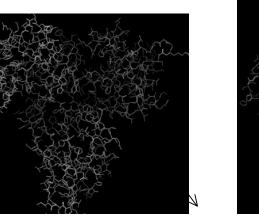
- Comparing Protein Structures
 - Aligning 3D Structures
 - Comparison of Identical, Homologous, Unrelated Structures
 - Translation & Rotation Methods
- Predicting Protein Structure
 - Secondary Structure Prediction
 - Specialized Structural Regions
 - Tertiary Structure Prediction
 - Threading
 - Modeling
- Structure Viewers

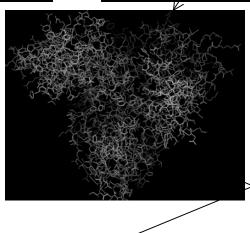
<u>Sequence & Structure</u> <u>Homology</u>

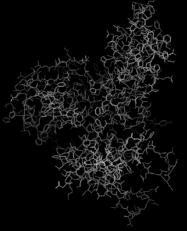
- Multiple Sequence Alignments
 - Identify relationships between sets of proteins
- Structure Classification Databases
 - Categorize related structures
 - Structure families do not necessarily share sequence homology

Structure Comparison

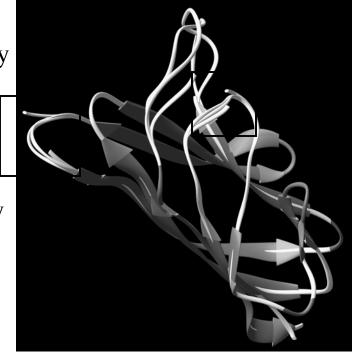

- Compare Structures that are:
 - Identical
 - Similarity/difference of independent structures, x-ray vs. nmr, apo vs. holo forms, wildtype vs. mutant
 - Similar
 - Predict function, evolutionary history, important domains
 - Unrelated
 - Identify commonalities between proteins with no apparent common overall structure focus on active sites, ligand binding sites
- Superimpose Structures by 3D Alignment


Structural Alignment


- Sequence alignment based on LINEAR sequence similarity
- Structure alignment forms relationships in 3D space
 - similarity can be redundant for multiple sequences
- Considerations
 - Which atoms/regions between two structure will be compared
 - Will the structures be compared as rigid or flexible bodies
 - Compare all atoms including side chains or just the backbone/C α
 - Try to maximize the number of atoms to align or focus on one localized region (biggest differences usually in solvent-exposed loop structures)
 - How does the resolution of each structure affect comparison


Translation and Rotation

- Alignment
 - Translate center of mass to a common origin
 - Rotate to find a suitable superposition
- Methods
 - Identify equivalent pairs (3) of atoms between structures to seed alignment
 - Iterate translation/rotation to maximize the number of matched atom pairs
 - Examine all possible combinations of alignments and identify the optimal solution



Alignment Methods

- Initially examine secondary structural elements and Cα-Cβ distances to identify folds and the ability to align
- Gap penalties for structures that have discontinuous regions that do not align (alignment-gap-alignment)
 - Anticipate that two different regions may align separately, but not in the same alignment
- Proceed with alignment method:
 - Dynamic Programming
 - Distance Matrix
 - Fast, Secondary Structure-Based

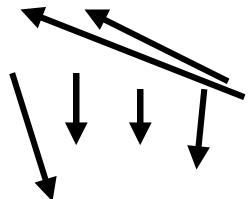
<u>Alignment by Dynamic</u> <u>Programming</u>

- Local environment defined in terms of
 - Interatomic distances, bond angles, side chain identity, side chain burial/exposure
- Align structures by matching local environments
 - For example, draw vectors representing each
 Cα-Cβ bond, superimpose vectors

Alignment by Distance Matrix

- Graphic procedure similar to a dot matrix alignment of two sequences to identify atoms that lie most closely together in a 3D structure (based on $C\alpha$ distances)
- Similar structures have super-imposable graphs
- Similarity score based on the degree by which matched elements can be superimposed (approximate solution)
- DALI (Distance ALIgnment tool)
 - Used to build FSSP database of structure comparisons

DALI Distance Alignment Method


- <u>http://www2.embl-ebi.ac.uk/dali/</u>
- Aligns two structures
- Determines if a new structure is similar to one already in database (classification)

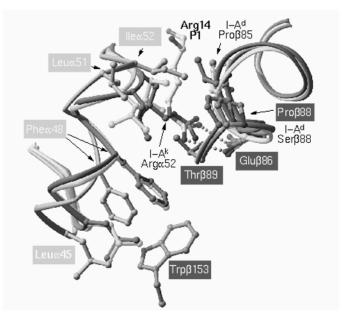
Fast Alignment by Secondary Structure

- Secondary structure elements can be represented by a vector starting at the beginning of the element
 - Position & length
- Compare the arrangement of clustered vectors between two structures to identify common folds
- Sometimes supplement vectors with information about the arrangement of the side chains (burial/exposure)
- Significance of alignment
 - Likelihood that a cluster of secondary structural elements would be expected between unrelated structures

VAST and SARF

- Implement automatic methods to assign secondary structure
- VAST

http://www.ncbi.nlm.nih.gov:80/Structure/VAST/v astsearch.html


• SARF

http://123d.ncifcrf.gov/

WIBR Bioinformatics Course, © Whitehead Institute, 2002

Quality of Alignments

- Calculate deviation between two aligned structures
- RMSD (Root Mean Square Deviation)
 - Goodness of fit between two sets of coordinates
 - Best if < 3 Å
 - Calculate Cα-Cα distances, sum square of distances, divide by the number of pairs, square root

$$RMSD = \sqrt{\sum_{i=1}^{N} D_i^2 / N}$$

WIBR Bioinformatics Course, © Whitehead Institute, 2002

Proteins II. - Syllabus

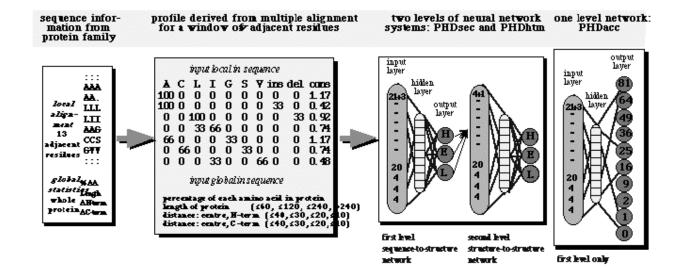
- Comparing Protein Structures
 - Aligning 3D Structures
 - Comparison of Identical, Homologous, Unrelated Structures
 - Translation & Rotation Methods
- Predicting Protein Structure
 - Secondary Structure Prediction
 - Specialized Structural Regions
 - Tertiary Structure Prediction
 - Threading
 - Modeling
- Structure Viewers

Predicting Secondary Structure

- Recognizing Potential Secondary Structure
 - 50% of a sequence is usually alpha helices and beta sheet structures
 - Helices: 3.6 residues/turn, N+4 bonding
 - Strands: extended conformation, interactions between strands, disrupted by beta bulges
 - Coils: A,G,S,T,P are predominant
 - Sequences with >45% sequence identity should have similar structures
- Databases of sequences and accompanying secondary structures (DSSP)

<u>Secondary Structure</u> <u>Prediction Methods</u>

- Methods
 - Chou-Fasman/GOR
 - Neural Networks
 - Nearest Neighbor


Chou-Fasman/GOR Prediction

- Analyze the frequency of each of the 20 aa in every secondary structure (Chou, 1974)
- A,E,L,M prefer α helices; P,G break helices
- Use a 4-6aa examination window to predict probability of α helix, 3-5aa window for beta strands
 - Extend regions by moving window along sequence
- 50-60% effective (Higgins, 2000)
- GOR method assumes that residues flanking the central window/core also influence secondary structure

Neural Network Prediction

- Examine patterns in secondary structures by computationally learning to recognize combinations of aa that are prevalent within a particular secondary structure
- Program is trained to distinguish between patterns located in a secondary structure from those that are not usually located in it
- PHDsec (Profile network from HeiDelberg)
 - $\sim 70\%$ correct predictions

PHD Neural Network

(Rost, Burkhard. Meth. In Enzym. 1996)

http://www.embl-heidelberg.de/predictprotein/submit_def.html

WIBR Bioinformatics Course, © Whitehead Institute, 2002

Nearest Neighbor Prediction

- Generate an iterated list of peptide fragments by sliding a fixed-size window along sequence
- Predict structure of aa in center of the window by examining its k neighbors (Yi, 1993)
 - Propensity of center position to adopt a structure within the context of the neighbors
- Method relies on an initial training set to teach it how neighbors influence secondary structure
- NNSSP <u>http://dot.imgen.bcm.tmc.edu:9331/pssprediction/pssp.html</u>

<u>Secondary Structure</u> <u>Prediction Tools</u>

- NNpredict 65 % effective*, outputs H,E,-
 - <u>http://www.cmpharm.ucsf.edu/~nomi/nnpredict.html</u>
- PredictProtein query sequence examined against SWISS-PROT to find homologous sequences
 - MSA of results given to PHD for prediction
 - 72% effective*
 - <u>http://www.embl-heidelberg.de/predictprotein/submit_def.html</u>
- Jpred integrates multiple structure prediction applications and returns a consensus, 73% effective*
 - http://jura.ebi.ac.uk:8888/

*(Higgins, 2000)

WIBR Bioinformatics Course, © Whitehead Institute, 2002

Predicting Specialized Structures

- Leucine Zippers
 - Antiparallel α helices held together by interactions between L residues spaced at ever 7th position
- Coiled Coils
 - 2 or three a helices coiled around each other in a lefthanded supercoil
 - Multicoil <u>http://gaiberg.wi.mit.edu/cgi-bin/multicoil.pl</u>
 - COILS2 http://www.ch.embnet.org/software/COILS_form.html
- Transmembrane Regions
 - 20-30aa domains with strong hydrophobicity
 - PHDhtm, PHDtopology, TMpred (TMbase)
 - <u>http://www.embl-heidelberg.de/predictprotein/predictprotein.html</u>

Tertiary Structure Prediction

- Goal
 - Build a model to use for comparison with other structures, identify important residues/interactions, determine function
- Challenges
 - Reveal interactions that occur between residues that are distant from each other in a linear sequence
 - Slight changes in local structure can have large effects on global structure
- Methods
 - Sequence Homology use a homologous sequence as a template
 - Threading search for structures that have similar fold configurations without any obvious sequence similarity

Threading - Approaches

- Sequence is compared for its compatibility (structural similarity) with existing structures
- Approaches to determine compatibility
 - Environmental Template: environment of ea. aa in a structure is classified into one of 18 types, evaluate ea. position in query sequence for how well it fits into a particular type (Mount, 2001)
 - Contact Potential Method: analyze the closeness of contacts between aa in the structure, determine whether positions within query sequence could produce similar interactions (find most energetically favorable) (Mount, 2001)

Threading Process

- Sequence moved position-by-position through a structure
- Protein fold modeled by pair-wise interatomic calculations to align a sequence with the backbone of the template
 - comparisons between local and non-local atoms
 - Compare position i with every other position j and determine whether interactions are feasible
- Optimize model with pseudo energy minimizations
- Most energetically stable alignment assumed to be most favorable
- Thread the smallest segment reasonable! Computationally intensive.

Threading Tools

- 123D <u>http://123d.ncifcrf.gov/123D+.html</u>
- Prospect (Fladda)

Model Building

- Perform automated model constructions
 SWISS-MODEL
 - Compare sequence to ExPdb to find a homolog
 - Define your own templates (from threading)
 - <u>http://www.expasy.ch/swissmod/SWISS-MODEL.html</u>
 - GENO3D
 - PSI-BLAST to identify homologs possessing structures to be used as templates
 - <u>http://geno3d-pbil.ibcp.fr</u>

Model Evaluation

- Manually examine model and alignments
- Find similar structures through database searches
 - DALI
- How does the model compare to other structures with the template family?
- Remember, it's only a MODEL (but even models can be useful)

Proteins I.-III. Summary

- Proteins I.
 - Phylogenetic Trees
 - Multiple Sequence Alignments
- Proteins II.
 - Searching for Homologous Sequences
 - Working with Protein Structure Information
- Proteins III.
 - Comparing Protein Structures
 - Building Structural Models

Visualizing Structural Information

- Hand edit files
- Different representations of molecule
 - wire, backbone, space-filling, ribbon
- NMR ensembles
 - Models showing dynamic variation of molecules in solution
- VIEWERS
 - RasMol (Chime is the Netscape plug-in)
 - http://www.umass.edu/microbio/rasmol/index2.htm
 - Cn3D MMDB viewer (See in 3D) with explicit bonding
 - http://www.ncbi.nlm.nih.gov/Structure
 - SwissPDB Viewer
 - http://www.expasy.ch/spdbv/mainpage.html

WIBR Bioinformatics Course, © Whitehead Institute, 2002

Demo

- Identify segment to thread and model
 - Align homologs, define important domains
- Thread sequence to identify template
 - Web-based: 123D http://123d.ncifcrf.gov/123D+.html
 - Locally: Prospect (on Fladda)
 - <u>http://compbio.ornl.gov/structure/prospect/</u>
 - % bsub prospect -top 20 yfs.seq
- Model sequence with template

- http://www.expasy.ch/swissmod/SWISS-MODEL.html

• Visualization

References

Bioinformatics: Sequence and genome Analysis. David W. Mount. CSHL Press, 2001.

Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. Andreas D. Baxevanis and B.F. Francis Ouellete. Wiley Interscience, 2001.

Bioinformatics: Sequence, structure, and databanks. DesHiggins and Willie Taylor. Oxford University Press, 2000.Chou, P.Y. and Fasman, G. D. (1974). Biochemistry, 13, 211.Yi, T-M. and Lander, E.S.(1993) J. Mol. Biol., 232,1117.