Bioinformatics

Proteins II. Pattern, Profile, & Structure
Database Searching

Robert Latek, Ph.D.
Bioinformatics, Biocomputing

Proteins I.-III. - Syllabus

- Proteins I.
 - Phylogenetic Trees
 - Multiple Sequence Alignments
- Proteins II.
 - Searching for Homologous Sequences
 - Working with Protein Structure Information
- Proteins III.
 - Comparing Protein Structures
 - Building Structural Models

Last Week

- Phylogenetic Trees
 - Trees show the relationship between sequences
 - Approaches: Maximum Parsimony, Distance, Maximum Likelihood
 - Distance scores should be considered secondary to tree shape
- Multiple Sequence Alignments
 - Approaches
 - Global: Dynamic Programming, Progressive, Iterated
 - Local: Profiles, Block-Based, Motif-Based
 - Manual manipulation of alignments with applications like Jalview is acceptable and recommended (esp. for pattern identification)
 - Scoring is usually the Sum of Pair-wise alignment scores

Proteins II. - Syllabus

- Searching for Homologous Sequences
 - Pattern Searches
 - Patscan
 - Profile Searches
 - PSI-BLAST/HMMER2
- Working with Protein Structure Information
 - Coordinate Files, Databases, Classification
 - Structure Viewers

Protein Modules

- Proteins are derived from a limited number of basic building blocks (Domains)
- Evolution has shuffled these modules giving rise to a diverse repertoire of protein sequences
- As a result, proteins can share a global or local relationship

(Higgins)

Protein Families

- Protein Family a group of proteins that share a common function and/or structure, that are potentially derived from a common ancestor (set of homologous proteins)
- Characterizing a Family Compare the sequence and structure patterns of the family members to reveal shared characteristics that potentially describe common biological properties
- Motif/Domain sequence and/or structure patterns common to protein family members

Patterns & Profiles

- Techniques for searching sequence databases to uncover common domains/motifs of biological significance that categorize a protein into a family
- Pattern a deterministic syntax that describes multiple combinations of possible residues within a protein string
- Profile probabilistic generalizations that assign to every segment position, a probability that each of the 20 aa will occur

Pattern/Profile Discovery Algorithms

- Pattern Driven Methods
 - Enumerate all possible patterns in solution space and try matching them to a set of sequences

Pattern/Profile Discovery Algorithms

- Sequence Driven Methods
 - Build up a pattern by pair-wise comparisons of input sequences, storing positions in common, removing positions that are different

Sequence Patterns

- Specification a single residue K, set of residues (KPR), exclusion {KPR}, wildcards X, varying lengths x(3,6) -> variable gap lengths
- General Syntax
 - C-x(2,4)-C-x(3)-[LIVMFYWC]-x(8)-H-x(3,5)-H
- Patscan Syntax (http://web.wi.mit.edu/bio/pub/patscan.html)
 - C 2...4 C 3...3 any(LIVMFYWC) 8...8 H 3...5 H
- Patscan command
 - %scan_for_matches -p pattern_file < /db0/Data/nr >
 output_file

Sequence Pattern Concerns

- Pattern descriptors must allow for approximate matching by defining an acceptable distance between a pattern and a potential hit
 - Weigh the sensitivity and specificity of a pattern
- What is the likelihood that a pattern would randomly occur?

Sequence Profiles

- Consensus mathematical probability that an aa will be located at a given position
- Probabilistic pattern constructed from a MSA
- Opportunity to assign penalties for insertions and deletions (not well suited for variable gap lengths)
- PSSM Position Specific Scoring Matrix
 - Columns of weights for every aa corresponding to each column of a MSA

PSSM Example

C O																				
N	A	C	D	E	F	G	H	I	K	L	M	N	P	Q	R	S	T	\mathbf{V}	W	Y
Ι	8	-2	5	4	5	5	-4	<u>24</u>	0	15	13	1	1	1	-7	2	22	21	-18	-6
Т	13	-5	24	18	-18	19	7	1	7	-7	-4	14	11	10	-1	9	<u>29</u>	3	-28	-14
L	5	-5	3	4	13	4	2	8	-4	<u>14</u>	12	8	-5	0	-10	0	10	10	-1	5
S	17	17	13	10	-12	29	-5	-5	6	-14	-9	12	10	0	-2	<u>34</u>	19	1	-8	-15

PSSM Properties

Score-based sequence representations for searching databases

Scores Calculation

- Log odds score representing: Distribution of aa in an MSA column, substitution matrices
- Goal
 - Limit the diversity in each column to improve reliability
- Problems
 - Differing length gaps between conserved positions (unlike patterns)

PSSM Weighting

- Differentially weight sequences to reduce redundancy from non-representative sampling
 - Similar sequences get low weights, diverged sequences get higher weights
 - Maximum discrimination: weights that best discriminate between positives and background
 - Use root to sequence distance to calculate weight
 - Average distance of a sequence to all other sequences

Building Profiles: Hidden Markov Models

- Statistical model that considers all the possible combinations of matches, mismatches, and gaps to generate a consensus (Higgins, 2000)
- Sequence ordering and alignments are not necessary at the onset (but in many cases alignments <u>are</u> recommended)
- Ideally use at least 20 sequences in the training set to build a model
- Calibration prevents over-fitting training set (i.e. Ala scan)
- Generate a model (profile), then search a database with it
- Limitations
 - Not all potential domains are represented in each family database, therefore, should develop own models/profiles

Searching Family Databases

- BLAST searches provide a great deal of information, but it is difficult to select out the important sequences (listed by score, not family)
- Family searches can give an immediate indication of a protein's classification/function
- Identify domains and family members
 - Use a sequence to search a database and characterize a pattern and identify its protein family
 - Use a specific pattern to identify homologous sequences (family members)

Family Database Resources

- Curated Databases*
 - Proteins are placed into families with which they share a specific sequence pattern
- Clustering Databases*
 - Sequence similarity-based without the prior knowledge of a specific patterns
- Derived Databases*
 - Pool other databases into one central resource

```
*(Higgins )
```

Curated Family Databases

- Pfam (http://pfam.wustl.edu/hmmsearch.shtml/) **
 - Uses manually constructed seed alignments and HMM PSSMs to automatically extract domains
 - db of protein families and corresponding profile-HMMs
 - Searches report e-value and bits score
- Prosite (<u>http://www.expasy.ch/tools/scanprosite/</u>)
 - Hit or Miss -> no stats
- PRINTS (http://www.bioinf.man.ac.uk/fingerPRINTScan/)
 - Find fingerprints in your sequence

Clustering Family Databases

- Search a database against itself and cluster similar sequences into families
- ProDom
 (http://prodes.toulouse.inra.fr/prodom/doc/prodom.html)
 - Searchable against MSAs and consensus sequences
- Protomap (http://www.protomap.cs.huji.ac.il/)
 - Swiss-Prot based and provides a tree-like view of clustering

Derived Family Databases

- Databases that utilize protein family groupings provided by other resources
- Blocks Search and Make (http://blocks.fhcrc.org/blocks/)
 - Uses Protomap system for finding blocks that are indicative of a protein family (GIBBS/MOTIF)
- Proclass (http://pir.georgetown.edu/gfserver/proclass.html)
 - Combines families from several resources using a neural network-based system (relationships)
 - Not an alignment-based system
- MEME (Locally available through GCG on fladda) (http://meme.sdsc.edu/meme/website/intro.html)

HMM Implementations Profile Building & Searching

PSI-BLAST

http://www.ncbi.nlm.nih.gov/BLAST/

- Start with a sequence, BLAST it, align select results to query sequence, estimate a profile with the MSA, search DB with the profile
- Iterate until process stabilizes
- Focus on domains, not entire sequences
- Greatly improves sensitivity

PSI-BLAST Sample Output

Sequences with E-value WORSE than threshold

<u>qi 9629055 ref NP_044074.1 </u> (NC_001731) MC123R [Molluscum contag	37	0.18
gi 8176554 qb AAB35488.2 (S79774) bile salt-dependent lipase; B	36	0.25
<u>qi 4502771 ref NP_001798.1 </u> (NM_001807) carboxyl ester lipase (b	<u>35</u>	0.88
qi 231629 sp P19835 BAL HUMAN Bile-salt-activated lipase precurs	<u>35</u>	0.89
<u>gi 15242929 ref NP 200612.1 </u> (NM 125189) putative protein [Arabi	34	1.1
<u>gi 9759529 dbj BAB10995.1 </u> (AB024029) gene id:K21L19.3~unknown p	34	1.3
<u>qi 180482 qb AAA52014.1 </u> (M85201) cholesterol esterase [Homo sap	33	1.8
gi 118706 sp P21173 DNAA MICLU Chromosomal replication initiator	32	4.6
gi 126679 sp P16110 LEG3 MOUSE GALECTIN-3 (GALACTOSE-SPECIFIC LE	32	4.9
gi 52851 emb CAA34206.1 (X16074) L-34 protein (AA 1-264) [Mus sp.]	32	5.0
gi 539907 pir A45983 lactose-binding lectin Mac-2 - mouse	32	5.0
gi 387111 gb AAA37311.1 (J03723) carbohydrate binding protein 3	32	5.4
<u>gi 9506427 ref NP 062019.1 </u> (NM 019146) bassoon [Rattus norvegic	32	5.5

HMM Implementations Profile Building & Searching

- HMMER2 (http://hmmer.wustl.edu/)
 - Determine which sequences to include/exclude
 - Perform alignment, select domain, excise ends,
 manually refine MSA (pre-aligned sequences better)
 - Build profile
 - %hmmbuild [-options] <hmmfile output> <alignment file>
 - Calibrate profile (re-calc. Parameters by making a random db)
 - %hmmcalibrate [-options] <hmmfile>
 - Search database
 - %hmmsearch [-options] <hmmfile> <database file>

HMMER2 Output

- Hmmsearch returns e-values and bits scores
- Repeat process with selected results
 - Unfortunately need to extract sequences from the results and manually perform MSA before beginning next round of iteration

Validating HMMER2 Profiles

- Including false positives into the building process will reduce the accuracy of the profile (increase the noise)
- Validate by
 - Blast results against each other
 - Demonstrate that you can get from one sequence to another

Patterns vs. Profiles

Patterns

- Easy to understand (human-readable)
- Account for different length gaps

Profiles

- Sensitivity, better signal to noise ratio
- Teachable

Protein Structures

- Protein Structure Classification
- Coordinate Files
- Structure Coordinate Databases
- Structure Family Databases
- Structure Visualization

Protein Structure Classification

- Proteins can adopt only a limited number of possible 3D conformations
 - Combinations of ☐ helices, ☐ sheets, loops, and coils
- Completely different sequences can fold into similar shapes
- Protein Structure Classes
 - Class □: bundles of □ helices
 - Class □: antiparallel □ sheets (sandwiches and barrels)
 - Class ☐ / ☐: parallel ☐ sheets with intervening ☐ helices
 - Class □ + □: segregated □ helices and antiparallel □ sheets
 - Multidomain
 - Membrane/Cell surface proteins

(Higgins

Coordinate Files

- Coordinate Data: location of a molecule's atoms in space (XYZ triple)
- XYZ triple is labeled with an atom, residue, chain, and molecule
 - Modified as are labeled with X, H's not usually listed
- Data Representation
 - Chemistry Rules Approach: connect the dots utilizing a standard rules base to specify bond distances (not consistent among applications)
 - Explicit Bonding Approach: explicit bonding information is specified in the file (very consistent)

Coordinate File Formats

- MMDB http://www.ncbi.nlm.nih.gov/Structure/
 - ASN.1 standard data description language
- PDB
 - Column oriented, "flexible format"
 - Sequence Explicit SEQRES and Implicit ATOM lines
- mmCIF
 - Chemical Interchange Format relational db format
 - http://web.wi.mit.edu/proteins/education/1F3J.cif

Structure Coordinate Databases

- RCSB (Research Collaboratory for Structural Bioinformatics) http://www.rcsb.org/
 - Formally know as the Protein Data Bank at Brookhaven National Laboratories
 - Structure Explorer PDB search engine
 - Text and PDB ID (4 letter code) searching
- MMDB (Molecular Modeling Database @NCBI)
 - Compilation of structures represented in multiple formats
 - Provides structure summaries
 - BLAST sequences to search for available structures

Structure Families

- Divide structures into the limited number of possible structure families
 - Homologous proteins can be identified by examining their respective structures for conserved fold patterns
 - Representative members can be used for modeling sequences of unknown structure

Structure Family Databases

- SCOP: Structural Classification Of Proteins
 - based on a definition of structural similarities. Hierarchical levels to reflect evolutionary and structural relationships
- CATH: Classification by Class, Architecture, Topology, and Homology
 - classified first into hierarchical levels like SCOP
- FSSP: Fold classification based on Structure-structure alignment of proteins
 - based on structural alignment of all pair-wise combinations of proteins in PDB by DALI (used to id common folds and place into groups)
- MMDB
 - Aligns 3D structures based on similar arrangements of secondary structural elements (VAST)
- SARF
 - categorized on the basis of structural similarity, categories are similar to other dbs

Resource Links

- Protein data bank (PDB)
 - http://www.rcsb.org/pdb
- Molecular Modeling Database
 - http://www.ncbi.nlm.nih.gov/Structure/
- Structural Classification of Proteins SCOP
 - http://scop.mrc-lmb.cam.ac.uk/scop
- CATH
 - http://www.biochem.ucl.ac.uk/bsm

Next Week

- Proteins I.
 - Phylogenetic Trees
 - Multiple Sequence Alignments
- Proteins II.
 - Searching for Homologous Sequences
 - Working with Protein Structure Information
- Proteins III.
 - Comparing Protein Structures
 - Building Structural Models

Visualizing Structural Information

- Hand edit files
- Different representations of molecule
 - wire, backbone, space-filling, ribbon
- NMR ensembles
 - Models showing dynamic variation of molecules in solution
- VIEWERS
 - RasMol and Chime is the Netscape plug-in
 - http://www.umass.edu/microbio/rasmol/index2.html
 - Cn3D MMDB viewer (See in 3D) with explicit bonding
 - http://www.ncbi.nlm.nih.gov/Structure
 - SwissPDB Viewer
 - http://www.expasy.ch/spdbv/mainpage.html

References

- Bioinformatics: Sequence and genome Analysis. David W. Mount. CSHL Press, 2001.
- Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. Andreas D. Baxevanis and B.F. Francis Ouellete. Wiley Interscience, 2001.
- Bioinformatics: Sequence, structure, and databanks. Des Higgins and Willie Taylor. Oxford University Press, 2000.