Bioinformatics

Proteins I. - Phylogenetic Trees &

Multiple Sequence Alignments

Robert Latek, Ph.D. Bioinformatics, Biocomputing

Proteins I.-III. - Syllabus

- Proteins I.
 - Phylogenetic Trees
 - Multiple Sequence Alignments
- Proteins II.
 - Profiles, Motifs, and Database Searches
 - Working with Protein Structures
- Proteins III.
 - Comparing Protein Structures
 - Building Structural Models

Proteins I. - Syllabus

- Relationship of MSA and Trees
- Phylogenetic Trees
 - Approaches: Maximum Parsimony, Distance,
 Maximum Likelihood
- Multiple Sequence Alignments
 - Approaches
 - Global: Dynamic Programming, Progressive, Iterated
 - Local: Profiles, Block-Based, Motif-Based
- Pointers & Demo

Comparative Genomics

- Identify genes within an organism that are related to each other and across different species
- Generate an evolutionary history of related genes
- Locate insertions, deletions, and substitutions that have occurred during evolution

Homology

- Homologs: conserved sequences arising from a common ancestor
 - Orthologs: homologous genes that share a common ancestor in the absence of any gene duplication (speciation)
 - Paralogs: genes related through gene duplication (one gene is a copy of another)
- Similarity: genes that share common sequences but that are not necessarily related

- A graphs representing the evolutionary history of a sequence
- Relationship of one sequence to other sequences
- Dissect the order of appearance of insertions, deletions, and mutations
- Predict function, observe epidemiology, analyzing changes in viral strains

Simple Tree

Multiple Sequence Alignments (MSA)

- Place residues in columns that are derived from a common ancestral residue
- MSA can reveal sequence patterns
 - Demonstration of homology between >2 sequences
 - Identification of functionally important sites
 - Protein function prediction
 - Structure prediction
 - Search for weak but significant similarities in databases
 - Design PCR primers for related gene identification
 - Genome sequencing: contig assembly

Multiple Sequence Alignment

MSA and Tree Relationship

• "The optimal alignment of several sequences can be thought of as minimizing the number of mutational steps in an evolutionary tree for which the sequences are the leaves"

Proteins I. - Syllabus

- Relationship of MSA and Trees
- Phylogenetic Trees
 - Approaches: Maximum Parsimony, Distance,
 Maximum Likelihood
- Multiple Sequence Alignments
 - Approaches
 - Global: Dynamic Programming, Progressive, Iterated
 - Local: Profiles, Block-Based, Motif-Based
- Pointers & Demo

Tree Shapes

Branches intersect at Nodes

Number of Possible Trees

Leaves

Rooted Trees

Unrooted Trees

(Li

Tree Types

Cladogram: shows the branching order of nodes

Phylogram: shows branching order and distances

Distance: number of changes that have taken place along a branch

Clade: all the descendants of a common ancestor represented by a node

Tree Building Methods

Maximum Parsimony

- Distance Methods
 - UPGMA & Neighbor Joining
- Maximum Likelihood

Maximum Parsimony

- "Predicts a tree that minimizes the number of steps required to generate the observed variation between sequences" (Mount, 2001)
- Find the tree that changes one sequence into all of the others by the least number of steps
- Only informative sites are analyzed (not gaps or conserved positions)
- Can be misleading when rates of change vary in different tree branches

Maximum Parsimony - Example

Informative Trees

Distance Methods

- Distance is expressed as the fraction of sites that differ between two sequences in an alignment
- Sequences with the smallest number of changes (shortest distance) are "neighbors"
- Distance matrix: table generated with distance scores describing the number of changes needed to change one sequence to another
- Build the tree based on a distance matrix derived from multiple alignments

Distance Methods - UPGMA

- UPGMA (Unweighted Pair-Group Method with Arithmetic mean)
 - Sequentially find pair of taxa with smallest distance between them, and define branching as midpoint of two
 - Assumes the tree is additive and that rate of change is constant in all of the branches

Distance Methods - NJ

- Neighbor-Joining (NJ): useful when there are different rates of evolution within a tree
 - Each possible pair-wise alignment is examined
 Calculate distance from each sequence to every other sequence
 - Choose the pair with the lowest distance value and join them to produce the minimal length tree
 - Update distance matrix where joined node is substituted for two original taxa
 - Repeat process

Distance Methods - NJ

Maximum Likelihood

- Best accounts for variation in sequences
- Establish a probabilistic model with multiple solutions and determine which is most likely
- All possible trees are considered, therefore, only suitable for small number of sequences
 - Maximizes probability of finding optimal tree

Tree Reliability

- Probability that the members of a clade are always members of that clade
- Sample by Bootstrapping
 - Random site of an alignment is taken for a pseudoalignment
 - A second site is taken randomly, etc. (can take some sites more than once, some not at all)
 - Each set is subjected to the same analysis as the original data set
 - Construct a consensus bootstrap tree with the pseudoalignments & compare to original tree

Tree Building - Methods

```
Is there
                       Maximum
    strong
                       Parsimony
   sequence
  similarity?
       no
Is there clearly yes
recognizable ——>
                        Distance
                        Methods
  sequence
 similarity?
       no
  Maximum
  Likelihood
                                            (Mount
```

Proteins I. - Syllabus

- Relationship of MSA and Trees
- Phylogenetic Trees
 - Approaches: Maximum Parsimony, Distance,
 Maximum Likelihood
- Multiple Sequence Alignments
 - Approaches
 - Global: Dynamic Programming, Progressive, Iterated
 - Local: Profiles, Block-Based, Motif-Based
- Pointers & Demo

MSAs - Global vs. Local Alignments

- Global
 - Search for alignments, matching over entire sequences
- Local
 - Examine regions of sequence for conserved segments
- Matches, Mismatches, Gaps

Approaches

- Optimal Global Alignments
 - Dynamic programming
- Global Progressive Alignments
- Global Iterative alignments
- Local alignments
 - Profiles, Blocks, Patterns

Optimal Global Alignments (Dynamic Programming)

- Used for aligning a small number of sequences
- Build matrices with every possible combination and search for optimal solution
 - Optimal in the mathematical sense
 - Need to implement appropriate parameters
- Problem gets large quickly
 - Length raised to number of sequences
 - Align 10 sequences of 100 aa length

 100^{10}

Global Progressive Alignments

- Compute alignment scores (distances) between all pairs of sequences from pairwise alignments
- Build a guide tree using the pair-wise alignment distances (NJ)
- Align sequences sequentially following the tree
 - Align each node from leaves to root

Global Progressive Alignments Problems

- Dependence of MSA on the initial pair-wise alignments
- Improper scoring when aligning a set of sequences that have non-overlapping segments

Iterative Multiple Alignments

- "Repeatedly re-align subgroups of sequences into a global alignment to improve alignment score" (Mount, 2001)
- Selection of groups based on tree
- Recalculate pair-wise scores during progressive alignment, use new scores to rebuild the tree, which is used to improve alignments

Localized Alignments

- Profiles
 - A conserved portion of an alignment, includes scores for substitutions and gaps for the conserved region (consensus)
- Blocks
 - Conserved region without gaps
- Patterns
 - Motifs

Profile Analysis

- Perform global MSA on group of sequences
- Move highly conserved regions to smaller MSAs
- Generate scoring table with log odds scores
 - Each column is independent
 - Average Method: profile matrix values are weighted by the proportion of each amino acid in each column of MSA
 - Evolutionary Method: calculate the evolutionary distance (Dayhoff model) required to generate the observed amino acid distribution

Profile Example

	C O N	A	С	D	Е	F	G	Н	I	K	L	M	N	P	Q	R	S	Т	V	W	Y
	I	8	-2	5	4	5	5	-4	<u>24</u>	0	15	13	1	1	1	-7	2	22	21	-18	-6
Co	[A 8 13	C -2 -5	D 5	E 4 18	F 5 -18	G 5 <u>1</u> 9	H -4 7	I 24	K 0 7	L 15 -7	M 13	N 1 14	P 1 11	Q 1 10	R -7 -1	S 2 9	T 22 29			Y 3 -6 3 -14
	T	513	-55 17	324 13	48 10	138 -12	4 9 29	72 -5	18 -5	7-4 6	-174 -14	- 4 2 -9	148 12	1 1 5 10	100 0	-110 -2	,	<u>29</u> 10	3 10		-145 -15
	L	5	-5	3	4	13	4	2	8	-4	<u>14</u>	12	8	-5	0	-10	0	10	10	-1	5
	S	17	17	13	10	-12	29	-5	-5	6	-14	-9	12	10	0	-2	<u>34</u>	19	1	-8	-15

(Mount)

Block Analysis

- Represent a conserved region within a MSA
- Contain matches, mismatches, but no gaps
- Serve as anchors to assist in aligning sequences by aligning individual segments

Block Analysis

PDLPADLFTSCLTTPIKIALRWFCMQK AQLPADLFTSCLTTPINIALKWYAMQE PDLPADLFTSCLTSPIEISVRWYVLQN PELPADLFSCCLTCPIEISIRIFLMQS PHLPADLFTSCLTTPIRTSLAFHLSHS VEFPADVFTSCLTTPIKMALKWFCRRS

Patterns (Motifs)

- Find patterns like aa1 d1 aa2 d2 aa3
 - Definition of a motif (non-contiguous)
 - Remove low complexity regions
 - Validate with a statistical method
 - i.e. Docking site of a kinase to a receptor

Pointers

- When to use each method?
 - Related sequences = global progressive
 - Divergent sequences = local alignments
- Applications
 - MSA viewers: ClustalX, Jalview, Belvu
 - Annotation: Boxshade, Seqvu, MACAW,
 PUZZLE

File Formats

- MSF
 - http://web.wi.mit.edu/proteins/education/seq.msf
- ALN
 - http://web.wi.mit.edu/proteins/education/seq.aln
- PIR
 - http://web.wi.mit.edu/proteins/education/seq.pir
- DND
 - http://web.wi.mit.edu/proteins/education/seq.dnd
- PH
 - http://web.wi.mit.edu/proteins/education/seq.ph

Next Week

- Proteins I.
 - Phylogenetic Trees
 - Multiple Sequence Alignments
- Proteins II.
 - Profiles, Motifs, and Database Searches
 - Working with Protein Structures
- Proteins III.
 - Comparing Protein Structures
 - Building Structural Models

Demonstrations

- Multiple Sequence Alignments
 - Clustal (web-based)
 - http://pir.georgetown.edu/pirwww/search/multaln.html
 - ClustalX (local)
 - Jalview
- Tree Building
 - PAUP (UNIX-based)
 - ClustalX
 - Phylodendron http://iubio.bio.indiana.edu/treeapp/treeprintform.html

References

- Bioinformatics: Sequence and genome Analysis. David W. Mount. CSHL Press, 2001.
- Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. Andreas D. Baxevanis and B.F. Francis Ouellete. Wiley Interscience, 2001.
- Bioinformatics: Sequence, structure, and databanks. Des Higgins and Willie Taylor. Oxford University Press, 2000.