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Course Syllabus

Sequence Analysis 1. Pairwise alignments, database searching including
BLAST (FL) [1, 2, 3]

Sequence Analysis II. Database searching (continued), Pattern searching(FL)[7]
No Class - Martin Luther King Holiday

Sequence Analysis III. Hidden Markov models, gene finding algorithms (FL)[8]

Computational Methods I. Genomic Resources and Unix (GB)
Computational Methods II. Sequence analysis with Perl. (GB)

No Class - President's Birthday

Computational Methods III. Sequence analysis with Perl and BioPerl (GB)

Proteins I. Multiple sequence alignments, phylogenetic trees (RL) [4, 6]
Proteins II. Profile searches of databases, revealing protein motifs (RL) [9]
Proteins III.Structural Genomics:structural comparisons and predictions (RL)

Microarrays: designing chips, clustering methods (FL)

WIBR Bioinformatics Course, © Whitehead Institute, 2002




Topics to Cover

e Pattern searching

* Gene Finding algorithms
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Status of Sequencing (12/31/2001)
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Not Sequenced
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Topics to Cover

e Pattern searching

* Gene Finding algorithms

WIBR Bioinformatics Course, © Whitehead Institute, 2002




Pattern Searching
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Pattern Searching

RRRRYYYY
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Pattern Searching

RRRRYYYY 4 purines followed by 4
pyrimidines
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Pattern Searching

RRRRYYYY 4 purines followed by 4
pyrimidines

TATAA[1,0,0]
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Pattern Searching

RRRRYYYY 4 purines followed by 4
pyrimidines

TATAA[1,0,0] TATAA, allowing 1 mismatch
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Pattern Searching

RRRRYYYY 4 purines followed by 4
pyrimidines
TATAA[1,0,0] TATAA, allowing 1 mismatch

p1=6...8 GAGA ~pl
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Pattern Searching

RRRRYYYY 4 purines followed by 4
pyrimidines
TATAA[1,0,0] TATAA, allowing 1 mismatch

pl1=6...8 GAGA ~pl a hairpin with GAGA as the loop
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Pattern Searching

RRRRYYYY 4 purines followed by 4
pyrimidines
TATAA[1,0,0] TATAA, allowing 1 mismatch

pl1=6...8 GAGA ~pl a hairpin with GAGA as the loop

pl=6...6 3...8 pl
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Pattern Searching

RRRRYYYY 4 purines followed by 4
pyrimidines
TATAA[1,0,0] TATAA, allowing 1 mismatch

pl1=6...8 GAGA ~pl a hairpin with GAGA as the loop

pl=6...6 3...8 pl exact 6 character repeat
separated by up to 8
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Pattern Searching

RRRRYYYY 4 purines followed by 4
pyrimidines

TATAA[1,0,0] TATAA, allowing 1 mismatch

pl1=6...8 GAGA ~pl a hairpin with GAGA as the loop

pl=6...6 3...8 pl exact 6 character repeat
separated by up to 8

pl=6...6 3.8 p1[1,1,1]
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Pattern Searching

RRRRYYYY 4 purines followed by 4
pyrimidines

TATAA[1,0,0] TATAA, allowing 1 mismatch

pl1=6...8 GAGA ~pl a hairpin with GAGA as the loop

pl=6...6 3...8 pl exact 6 character repeat
separated by up to 8

pl=6...6 3.8 pl[1,1,1] allow one mismatch, deletion
and insertion

WIBR Bioinformatics Course, © Whitehead Institute, 2002




Pattern Searching Programs
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Pattern Searching Programs

Patscan
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Pattern Searching Programs

Patscan scan_for_matches patfile < inputtile
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Pattern Searching Programs

Patscan scan_for_matches patfile < inputtile

findpatterns
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Pattern Searching Programs

Patscan scan_for_matches patfile < inputtile

findpatterns  gcg; findpatterns
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Pattern Searching Programs

Patscan scan_for_matches patfile < inputtile

findpatterns  gcg; findpatterns

fuzznuc,
fuzzprot,
fuzztrans, dreg
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Pattern Searching Programs

Patscan scan_for_matches patfile < inputtile

findpatterns  gcg; findpatterns

fuzznuc, EMBOSS programs; web and Unix
fuzzprot,
fuzztrans, dreg

WIBR Bioinformatics Course, © Whitehead Institute, 2002




Topics to Cover

e Pattern searching

* Gene Finding algorithms
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Problem to Solve

Transcription Poly (A)
initiation AATAA

Initiation Stop
codon codon

Flanking region l
Intron I Intron 11

I
GT  AG GT

‘ Flanking
Fxon 1 Exon 2 Exon 3 region
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Types of Signals to Detect

e Transcriptional

= TSS

= TATA box

= PolyA
e Translational

_ Kozak (CC A/G CCAUGG)

— Termination codon (UAA, UAG, UGA)
* Splicing

— Introns - GT
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Gene Finding Strategies
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Gene Finding Strategies

e Content-based methods

— codon usage, compositional complexity
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Gene Finding Strategies

e Content-based methods

— codon usage, compositional complexity

e Site-based methods

— presence or absence of specific pattern or sequence
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Gene Finding Strategies

e Content-based methods

— codon usage, compositional complexity

e Site-based methods

— presence or absence of specific pattern or sequence

e Comparative methods

— determination based on homology
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Evolution of Gene Finding Programs

1980
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Evolution of Gene Finding Programs

ORF
1980
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Evolution of Gene Finding Programs

ORF
1980

Codon Usage
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Evolution of Gene Finding Programs

ORF
1980

Codon Usage

Splice Sites/Exons
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Evolution of Gene Finding Programs

ORF
1980

Codon Usage

Splice Sites/Exons

Whole genes
Multiple genes
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Evolution of Gene Finding Programs

ORF
1980

Codon Usage

Splice Sites/Exons

Whole genes
Multiple genes

Alternative splicing
Functional RNAs
Nested genes
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RepeatMasker

RepeatMasker Server

Repeathlasker is a program that screens DA sequences for low complexity DI A sequences and inferspersed repeats. The masked out sequence can be used to for ELAS T search.

Please refer to: Smit, AFA & Green, P "RepeatMasker" at itip:/repeatinasker. genome.washington.edu

Home Il Help || Check Quene || Your Suggestionll Referencesll RepBase Update
rn_repeamasker Reset

Enter your sequence ( sequence in fasta format)

{ OR) Upload the file Browse...

DNA Source is from [Pimaies -

= = Primates
Running options Rodents

Fast (quick searc{ Oher Mammals P, 3-4
A

hmes faster) Output Options

Other Vertebrates .
fimes slower) Show Alignments

Slow (slow' searc| prapidopsis E, 2.
Grasses
Repeat Options Drosophila Mask with X's to distinguish masked regions from Ms already in
Do not mask low_complexity DMA or simple repeats query
only masks Alus (and 7SLEMA, SVA and LTES)ionly for primate
DMNA) Produece an annotation table with fixed width eclumns

only masks low complexfsimple repeats (no interspersed repeats)
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RepeatMasker

Repeat sequence:

t
family

SINE/Alu
L1MDa LINE/L1

rluy SINE/Alu
L1MDa LINE/L1
A0 LINE/L1
LINE/LL

SINE/Alu

+
C
+
C
+
C
+
+
+
+

LINE/L1
SINE/Alu
LINE/LL
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RepeatMasker

Summary:

Total length: 8750 bp

GC level: 35.61% e
Bases masked: 6803 bp (77.75%) :

D L) L

DNA elaements:

Unclassified:

Lo

Total inter

Small RNA:
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Coding Measures

* Look at frequencies of codons (e.g.
redundancy of genetic code; Leucine =

UUA, UUG, CUU, CUC, CUA, CUG)

e 6-tuple or hexamer approach

ACCTCG TACTCG GCCCTC
Thr Ser Tyr Ser Ala Leu

WIBR Bioinformatics Course, © Whitehead Institute, 2002




Fifth Order Markov Models

Periodic fifth order Markov model. Circles represent consecutive DNA
bases, numbers indicate codon position, and the arrows indicate that
the next base i1s generated conditionally on the previous five and on the
codon position.

Burge and Karlin, Current Opinions in Structural Biology 1998, 8:346-354.
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Fifth Order Markov Models

01010101010

Periodic fifth order Markov model. Circles represent consecutive DNA
bases, numbers indicate codon position, and the arrows indicate that
the next base i1s generated conditionally on the previous five and on the
codon position.

Burge and Karlin, Current Opinions in Structural Biology 1998, 8:346-354.
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Fifth Order Markov Models

OOOOOE

Periodic fifth order Markov model. Circles represent consecutive DNA
bases, numbers indicate codon position, and the arrows indicate that
the next base i1s generated conditionally on the previous five and on the
codon position.

Burge and Karlin, Current Opinions in Structural Biology 1998, 8:346-354.
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Fifth Order Markov Models

DOOOOE

Periodic fifth order Markov model. Circles represent consecutive DNA
bases, numbers indicate codon position, and the arrows indicate that
the next base i1s generated conditionally on the previous five and on the
codon position.

Burge and Karlin, Current Opinions in Structural Biology 1998, 8:346-354.
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Hidden Markov Models

Burge and Karlin, Current Opinions in Structural Biology 1998, 8:346-354.
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Hidden Markov Models

unobserved or
“hidden” states (e.g.
coding or noncoding

Burge and Karlin, Current Opinions in Structural Biology 1998, 8:346-354.
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Hidden Markov Models

unobserved or
“hidden” states (e.g.
coding or noncoding

states generated
according to a first
order Markov chain

Burge and Karlin, Current Opinions in Structural Biology 1998, 8:346-354.
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Hidden Markov Models

unobserved or
“hidden” states (e.g.
coding or noncoding

states generated
according to a first
order Markov chain

observable DNA
bases

Burge and Karlin, Current Opinions in Structural Biology 1998, 8:346-354.
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Hidden Markov Models

unobserved or
“hidden” states (e.g.
coding or noncoding

states generated
according to a first
order Markov chain

observable DNA

each base generated
bases

conditionally on identity
of corresponding hidden
state

Burge and Karlin, Current Opinions in Structural Biology 1998, 8:346-354.
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GENSCAN

Burge and Karlin, JIMB:268:78-94, 1997
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GENSCAN

e MM - prob for a given nuc to occur at position p
depends on nuc occupying previous k postions

Burge and Karlin, JIMB:268:78-94, 1997
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GENSCAN

e MM - prob for a given nuc to occur at position p
depends on nuc occupying previous k postions

e Generalized Hidden Markov Model (GHMM)

Burge and Karlin, JIMB:268:78-94, 1997
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GENSCAN

e MM - prob for a given nuc to occur at position p
depends on nuc occupying previous k postions

e Generalized Hidden Markov Model (GHMM)

e Optimize module performing signal recognition

Burge and Karlin, JIMB:268:78-94, 1997
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GENSCAN

MM - prob for a given nuc to occur at position p
depends on nuc occupying previous k postions

Generalized Hidden Markov Model (GHMM)

Optimize module performing signal recognition

Incorporates influence of C+G content

Burge and Karlin, JIMB:268:78-94, 1997
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GENSCAN

MM - prob for a given nuc to occur at position p
depends on nuc occupying previous k postions

Generalized Hidden Markov Model (GHMM)

Optimize module performing signal recognition

Incorporates influence of C+G content

Considers gene models on both strands

Burge and Karlin, JIMB:268:78-94, 1997
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GENSCAN

MM - prob for a given nuc to occur at position p
depends on nuc occupying previous k postions

Generalized Hidden Markov Model (GHMM)

Optimize module performing signal recognition

Incorporates influence of C+G content
Considers gene models on both strands

Can 1dentify multiple genes

Burge and Karlin, JIMB:268:78-94, 1997
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GENSCAN

Burge and Karlin,
JMB:268:78-94, 1997
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Gene Finding Programs
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Gene Finding Programs

e FGENES - Sanger Center, UK
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Gene Finding Programs

e FGENES - Sanger Center, UK
* GeneMark HMM - Georgia Tech
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Gene Finding Programs

e FGENES - Sanger Center, UK
e GeneMark HMM - Georgia Tech
e Genie - UCSC
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Gene Finding Programs

FGENES - Sanger Center, UK
GeneMark HMM - Georgia Tech
Genie - UCSC

Genscan - Stanford and MIT
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Gene Finding Programs

FGENES - Sanger Center, UK
GeneMark HMM - Georgia Tech
Genie - UCSC

Genscan - Stanford and MIT
HMMgene - CBS, Denmark
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Gene Finding Programs

FGENES - Sanger Center, UK
GeneMark HMM - Georgia Tech
Genie - UCSC

Genscan - Stanford and MIT
HMMgene - CBS, Denmark
Morgan - John Hopkins
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Gene Finding Programs

FGENES - Sanger Center, UK
GeneMark HMM - Georgia Tech
Genie - UCSC

Genscan - Stanford and MIT
HMMgene - CBS, Denmark
Morgan - John Hopkins

MZEEF - Cold Spring Harbor
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HMR195 Test Set

Rogic, Mackworth and Ouellette, Genome Research 11:817-832, 2001
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HMR195 Test Set

* 103 human, 82 mouse, 10 rat sequences

Rogic, Mackworth and Ouellette, Genome Research 11:817-832, 2001
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HMR195 Test Set

e 103 human, 82 mouse, 10 rat sequences

e Sequence new since August, 1997

Rogic, Mackworth and Ouellette, Genome Research 11:817-832, 2001
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HMR195 Test Set

e 103 human, 82 mouse, 10 rat sequences

e Sequence new since August, 1997

* Genomic sequences containing exactly one
gene

Rogic, Mackworth and Ouellette, Genome Research 11:817-832, 2001
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HMR195 Test Set

103 human, 82 mouse, 10 rat sequences

Sequence new since August, 1997

Genomic sequences containing exactly one
gene

No mRNA sequences, pseudogenes or
alternatively spliced genes

Rogic, Mackworth and Ouellette, Genome Research 11:817-832, 2001
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HMR195 Test Set

103 human, 82 mouse, 10 rat sequences

Sequence new since August, 1997

Genomic sequences containing exactly one
gene

No mRNA sequences, pseudogenes or
alternatively spliced genes

The mean length of sequences 1s 7,096 bp

Rogic, Mackworth and Ouellette, Genome Research 11:817-832, 2001
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HMR195 Test Set (con’t)

Rogic, Mackworth and Ouellette, Genome Research 11:817-832, 2001
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HMR195 Test Set (con’t)

e 43 single-exon genes; 152 multi-exon genes

Rogic, Mackworth and Ouellette, Genome Research 11:817-832, 2001
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HMR195 Test Set (con’t)

e 43 single-exon genes; 152 multi-exon genes

e Average number of exons per gene 1s 4.86

Rogic, Mackworth and Ouellette, Genome Research 11:817-832, 2001
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HMR195 Test Set (con’t)

e 43 single-exon genes; 152 multi-exon genes

e Average number of exons per gene 1s 4.86

* Mean exon length = 208 bp,
mean intron length = 678 bp,

mean coding length per gene = 1,015 bp
GRRIF:F:)

Rogic, Mackworth and Ouellette, Genome Research 11:817-832, 2001

WIBR Bioinformatics Course, © Whitehead Institute, 2002




HMR195 Test Set (con’t)

43 single-exon genes; 152 multi-exon genes

Average number of exons per gene 1s 4.86

Mean exon length = 208 bp,
mean intron length = 678 bp,

mean coding length per gene = 1,015 bp
GRRIVF:F:)

Coding sequence 14%, intronic sequence
46% and intergenic DNA 40%.

Rogic, Mackworth and Ouellette, Genome Research 11:817-832, 2001
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Definitions

* Sensitivity: the proportion of true sites(e.g.,
exons or donor splice sites) which are

correctly predicted = TP/(TP + FN)

e Specificity: the proportion of predicted
sites which are correct = TP/(TP + FP)
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Results of Program Comparisons

Table 2. Accuracy versus Signal Type
Signal type

start acceptor  donor stop
codon site site codon
Programs (195) (753) (753) (195)

FGENES 0.67 0.80 0.85 0.75
(0.63) (0.77) (0.82) (0.72)

GeneMark. hmm 0.46 0.81 0.82 0.57
(0.60) (0.75) (0.78) (0.64)
0.56 0.77 0.78 0.72
(0.57) (0.82) (0.83) (0.73)
0.61 0.87 0.90 0.76
(0.78) (0.80) (0.84) (0.86)

HMMgens 0.75 0.81 0.83 0.78
(0.78) (0.85) (0.87) (0.81)

Morgan 0.43 0.66 0.65 0.39
(0.43) (0.57) (0.56) (0.39)

MZEF — 0.59 0.66 —

(0.65) (0.73)

For each program, the proportion of actual signals identified
correctly (the upper number) and the proportion of predicted
signals that are correct (the lower number) are averaged over
all signals belonging to a particular type. The number in pa-

Rogic’ Mackworl‘h and renthesis in the header of each column represents the number
of signals of each type in the HMR195 dataset.
Ouellette, Genome Research
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Results of Program Comparisons

o Genscan and HMMgene Table 2. Accuracy versus Signal Type
1 Signal type
had reliable scores for —
AONS By o o v

Programs

FGENES 0.67 0.80 0.85 0.75
(0.63) (0.77) (0.82) (0.72)

GeneMark. hmm 0.46 0.81 0.82 0.57
(0.60) (0.75) (0.78) (0.64)
0.56 0.77 0.78 0.72
(0.57) (0.82) (0.83) (0.73)
0.61 0.87 0.90 0.76
(0.78) (0.80) (0.84) (0.86)

HMMgens 0.75 0.81 0.83 0.78
(0.78) (0.85) (0.87) (0.81)

Morgan 0.43 0.66 0.65 0.39
(0.43) (0.57) (0.56) (0.39)

MZEF — 0.59 0.66 —

(0.65) (0.73)

For each program, the proportion of actual signals identified
correctly (the upper number) and the proportion of predicted
signals that are correct (the lower number) are averaged over
all signals belonging to a particular type. The number in pa-

Rogic’ Mackworl‘h and renthesis in the header of each column represents the number
of signals of each type in the HMR195 dataset.
Ouellette, Genome Research
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Results of Program Comparisons

Genscan and HMMgene Table 2. Accuracy versus Signal Type

. Signal type
had reliable scores for — ;i —
€X0NS G a5y a5y

Programs

1 — FGENES 0.67 0.80 0.85
Nucleotide Sn = .95 for o 0% 088
GeneMark. hmm 0.46 0.81 0.82

Genscan and 93 fOI' (0.60)  (0.75)  (0.78)
HMM i s 0.56 0.77 0.78
(0.57) (0.82) (0.83)

gene' BemEoan 0.61 0.87 0.90

(0.78) (0.80) (0.84)

HMMgens 0.75 0.81 0.83

(0.78) (0.85) (0.87)

Morgan 0.43 0.66 0.65

(0.43) (0.57) (0.56)

MZEF = 0.59 0.66

(0.65) (0.73)

For each program, the proportion of actual signals identified
correctly (the upper number) and the proportion of predicted
signals that are correct (the lower number) are averaged over
all signals belonging to a particular type. The number in pa-

Rogic’ Mackworl‘h and renthesis in the header of each column represents the number
of signals of each type in the HMR195 dataset.
Ouellette, Genome Research
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Results of Program Comparisons

Genscan and HMMgene Table 2. Accuracy versus Signal Type

. Signal type
had reliable scores for — ;i —
€X0NS G a5y a5y

Programs

Nucleotide Sn = .95 for S o
CeneMark. hmm 0.46 0.81 0.82

Genscan and .93 for - ©0.60)  (075)  (0.78)

H Genie 0.56 0.77 0.78
N] N] (0.57)  (0.82)  (0.83)
gene. Genscan 0.61 0.87 0.90

(0.78)  (0.80)  (0.84)

Sp = 90 and 93, HMMgene 0.75 0.81 0.83

(0.78) (0.85) (0.87)

< Morgan 0.43 0.66 0.65
respectively ©43)  ©57) (036
MZEF — 0.59 0.66

(0.65) (0.73)

For each program, the proportion of actual signals identified
correctly (the upper number) and the proportion of predicted
signals that are correct (the lower number) are averaged over
all signals belonging to a particular type. The number in pa-

Rogic’ Mackworl‘h and renthesis in the header of each column represents the number
of signals of each type in the HMR195 dataset.
Ouellette, Genome Research
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Results of Program Comparisons

Genscan and HMMgene Table 2. Accuracy versus Signal Type

1 Signal type
had reliable scores for —
“ROnS poarms 95 5y a%y G99

. —_ GENES 0.67 0.80 0.85 0.75
GeneMark. hmm 0.46 0.81 0.82 0.57

Genscan and .93 fOI‘ (0.60)  (0.75)  (0.78)  (0.64)

Genle 0.56 0.77 0.78 0.72

HMM gene. (0.57) (0.82)  (0.83) (0.73)

Genscan 0.61 0.87 0.90 0.76
(0.78) (0.80) (0.84) (0.86)

Sp = 90 and 93, HMMgene 0.75 0.81 083 078

(0.78) (0.85) (0.87)  (0.81)
0.43 0.66 0.65 0.39

Ire Spectively Horgan (0.43)  (0.57) (0.56) (0.39)

MZEF — 0.59 0.66 —

Accuracy dependent on ©s5) 0.7

For each program, the proportion of actual signals identified
G+C COIlt@Ilt correctly (the upper number) and the proportion of predicted

signals that are correct (the lower number) are averaged over
all signals belonging to a particular type. The number in pa-

Rogic’ Mackworl‘h and renthesis in the header of each column represents the number
of signals of each type in the HMR195 dataset.
Ouellette, Genome Research
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GenomeScan

Yeh, Lim, and Burge, Genome Research 11:803-816, 2001.
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GenomeScan

 Combines exon-intron and splice signal
models with similarity to know proteins

Yeh, Lim, and Burge, Genome Research 11:803-816, 2001.
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GenomeScan

 Combines exon-intron and splice signal
models with similarity to know proteins

e Used to 1dentify genes in human draft
sequence

Yeh, Lim, and Burge, Genome Research 11:803-816, 2001.
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GenomeScan

 Combines exon-intron and splice signal
models with similarity to know proteins

e Used to identify genes in human draft
sequence

e Uses GENSCAN and BLASTX

Yeh, Lim, and Burge, Genome Research 11:803-816, 2001.
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GenomeScan

Combines exon-1ntron and splice signal
models with similarity to know proteins

Used to 1dentify genes in human draft
sequence

Uses GENSCAN and BLASTX

Procrustes and Genewise similar but can
only predict one gene per genomic sequence

Yeh, Lim, and Burge, Genome Research 11:803-816, 2001.
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GenomeScan

A

Key: ] H
Internal  Terminal Single-Exon

i anal 1 Sra Initial
Genscan Annotated GenomeScan BLASTX Exon Evon Exon Gone

Exon Exon Exon Hit

BRCAI'}

& RPL2] pseudo

vaTi I —H—B
—H——"

kb

T T 108 - 117
-1 1L € 1H
RHO74}—HL IFP35 4l

- 99

Yeh, Lim, and Burge, Genome Research 11:803-816, 2001.
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GenomeScan

- - Invitial Internal  Terminal Single-Exon
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GenomeScan

Table 4. Summary of GenomeScan-predicted Genes and Partial Genes in the Human Genome

Type of predicted gene

Complete genes All genes
(>2 exons) Partial genes (partial + complete)

% of all
Similarity No. of No. of No. of No. of No. of No. of predicted
category genes exons/gene aa/gene genes exons/gene genes genes

Known (cDNA) 5698 9.6 496 8901 . 16040 41.5
Protein + EST 4502 8.8 510 6537 . 12546 32.5
Proteins only 2767 5.2 303 4600 . 10061 26.0

All 12967 8.4 460 20038 . 38647 100.0

Genes were predicted in the September 2000 GoldenPath human genome sequence as described in Methods. Predicted coding
sequences (CDS5) were first compared to cDNAs in the RefSeq cDNA database (September 2000) using BLASTN; those which had a
hit at least 100 bp long with at least 98% identity are listed as “known". The remaining predicted coding sequences were searched
against dbEST (September 2000 release) using BELASTN; those which had a hit at least 100 bp long with at least 97% identity are listed
as "Protein + EST". All other predicted genes are categorized as “Protein only” because all GenomeScan-predicted genes have at least
modest similarity to a known protein. Statistics are listed separately for predicted partial genes and predicted complete genes with at
least three exons; the category "“all genes” includes these two groups as well as predicted 1- and 2-exon genes.

Yeh, Lim, and Burge, Genome Research 11:803-816, 2001.
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Other Approaches

e Use microarrays to identify expressed genes
based on the coexpression of sets of

adjacent exons as predicted by GENSCAN
(Shoemaker, et al, Nature 409:922-927, 2001)
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Other Approaches

e Use microarrays to identify expressed genes

based on the coexpression of sets of

adjacent exons as predicted by GENSCAN
(Shoemaker, et al, Nature 409:922-927, 2001)

e RT-PCR with radio-labeled primers targeted
to pairs of adjecent predicted exons,
followed by sequencing of the amplified
pI’OdUCt (Burge et al, in preparation)
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Future Challenges

Alternative Splicing

Gene products functioning at RNA level
Nested genes

5' end of genes

Other unusual characteristics
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Coming attractions

* Next section on Computational Methods
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Coming attractions

e Next section on Computational Methods

e Unix accounts
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Coming attractions

e Next section on Computational Methods
e Unix accounts

e Course Projects
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