Bioinformatics

Microarrays: designing chips, clustering methods

Fran Lewitter, Ph.D. Head, Biocomputing Whitehead Institute

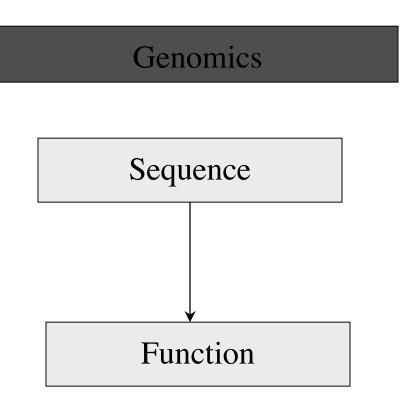
Course Syllabus

- Jan 7 Sequence Analysis I. Pairwise alignments, database searching including BLAST (FL) [1, 2, 3]
- Jan 14 Sequence Analysis II. Database searching (continued), Pattern searching(FL)[7]
- Jan 21 No Class Martin Luther King Holiday
- Jan 28 Sequence Analysis III. Hidden Markov models, gene finding algorithms (FL)[8]
- Feb 4 Computational Methods I. Genomic Resources and Unix (GB)
- Feb 11 Computational Methods II. Sequence analysis with Perl. (GB)
- Feb 18 No Class President's Birthday
- Feb 25 Computational Methods III. Sequence analysis with Perl and BioPerl (GB)
- Mar 4 Proteins I. Multiple sequence alignments, phylogenetic trees (RL) [4, 6]
- Mar 11 Proteins II. Profile searches of databases, revealing protein motifs (RL) [9]
- Mar 18 Proteins III.Structural Genomics:structural comparisons and predictions (RL)
- Mar 25 Microarrays: designing chips, clustering methods (FL)

Today's Outline

- Intro
- Designing microarrays
- Working with microarray data
 - Normalization
 - Analysis
 - Distance metrics
 - Clustering methods

Research Trends



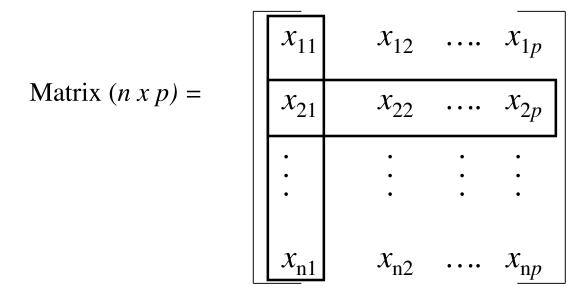
- How are genes regulated?
- How do genes interact?
- What are the functional roles of different genes?
- How does expression level of a gene differ in different tissues?

Transcriptional Profiling

- Study of patterns of gene expression across many experiments that survey a wide array of cellular responses, phenotypes and conditions
- Simple analysis what's up/down regulated?
- More interesting identify patterns of expression for insight into function, etc.

Microarray Data

Collect data on n DNA samples (e.g. rows, genes, promotors, exons, etc.) for p mRNA samples of tissues or experimental conditions (eg. columns, time course, pathogen exposure, mating type, etc)



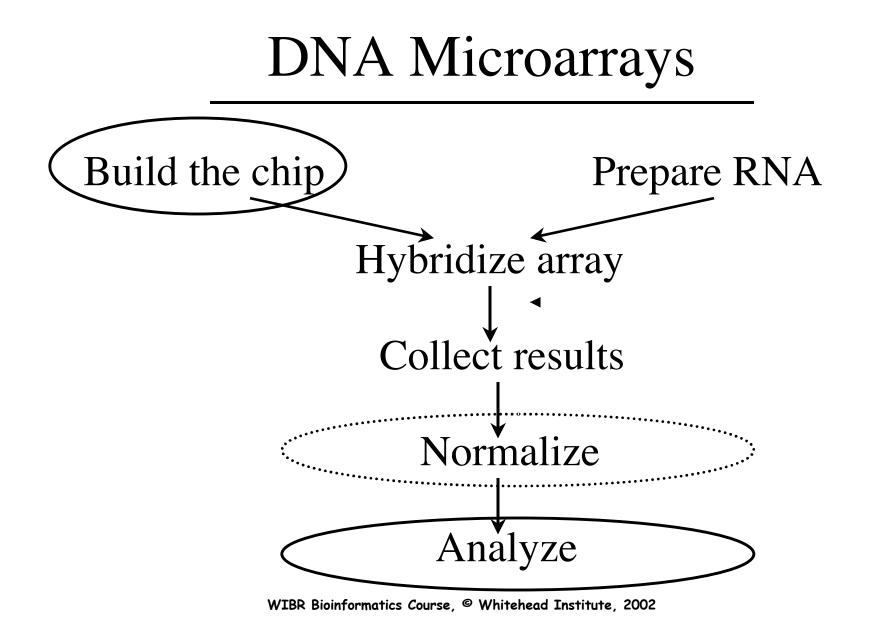
Multivariate Analysis

Concerned with datasets with more than one response variable for each observational or experimental unit (e.g. matrix X with *n* rows (genes) and *p* columns (tissue types))

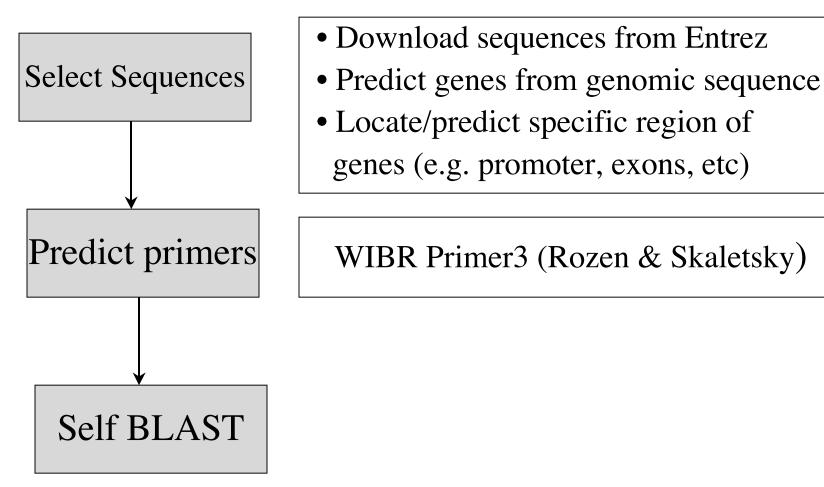
- Hierarchical (phylogenetic trees) vs non-hierarchical (kmeans)
- Divisive vs agglomerative
- Supervised vs unsupervised
 - Divide cases into groups vs discover structure of data

Multivariate Methods

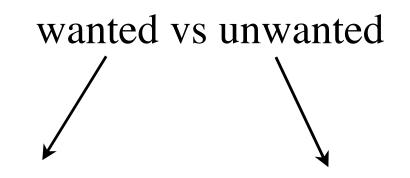
- Cluster analysis discover groupings among cases of X
 - Hierarchical produces dendograms
 - K-means choose a prespecified number of clusters
 - Self Organizing Maps
- Principal component analysis (PCA)
 - Linear method, unsupervised, seeks linear combinations of the columns of X with maximal (or minimal) variance (graphical)



Designing a Microarray



Sources of variation



Across experimental conditions

Chip, slide

Hybridization conditions

Imaging

Normalization

(Adapted from Quackenbush 2001)

Compensate for experimental variability

- Total intensity normalization
 - assumes the quantity of initial mRNA is same for labelled samples
- Normalization using regression technique
- Normalization using ratio statistics

After normalization

- Data reported as an "expression ratio" or as a logarithm of the expression ratio
- Expression ratio is the normalized value of the expression level for a particular gene in the query sample divided by its normalized value for the control
- Use log of expression ratio for easier comparisons

Distance Metrics

- Metric distances d_{ij} between two vectors, *i* and *j*,must obey several rules:
 - Distance must be positive definite, $dij \ge 0$
 - Distance must be symmetric, $d_{ij} = d_{ji}$, so that the distance from *i* to *j* is the same as the distance from *j* to *i*.
 - An object is zero distance from itself, $d_{ii} = 0$.
 - When considering three objects, *i*, *j* and *k*, $d_{ik} \le d_{ij} + d_{jk}$. This is sometimes called the 'triangle' rule.

Distance Metrics

(Adapted from Quackenbush 2001)

The most common metric distance is Euclidean distance, which is a generalization of the familiar Pythagorean theorem. In a three-dimensional space, the Euclidean distance, d₁₂, between two points, (x₁,x₂,x₃) and (y₁,y₂,y₃) is given by:

$$d_{12} = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2},$$

• where (x_1, x_2, x_3) are the usual Cartesian coordinates (x, y, z).

More on distance

(Adapted from Quackenbush 2001)

The generalization of this to higher-dimensional expression spaces is straightforward.

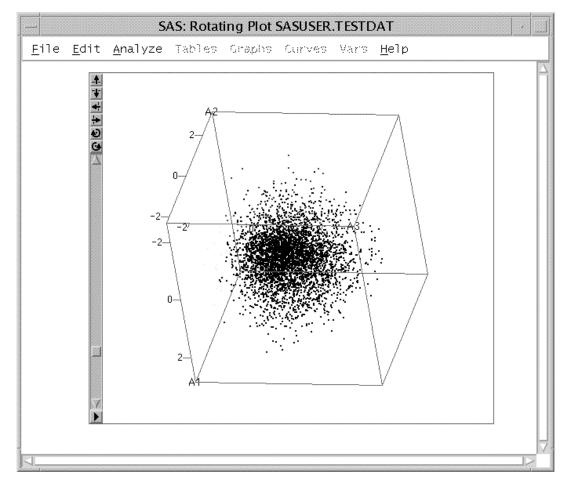
$$d = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2},$$

where x_i and y_i are the measured expression values, respectively, for genes X and Y in experiment *i*, and the summation runs over the *n* experiments under analysis.

Semi-metric distances

- Distance measures that obey the first three consistency rules, but fail to maintain the triangle rule are referred to as semi-metric.
- Pearson correlation coefficient is most commonly used semi-metric distance measure

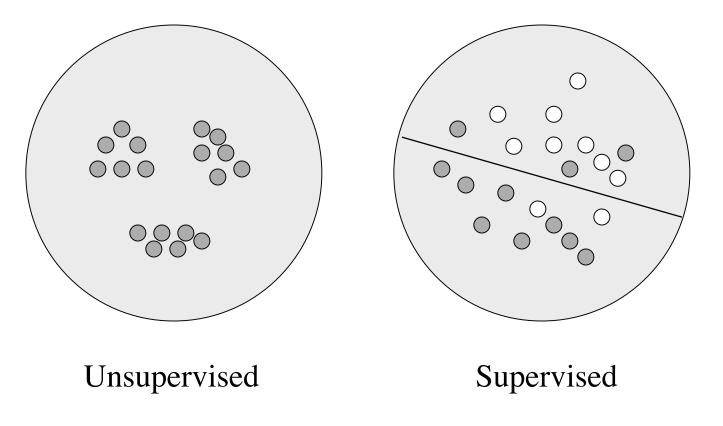
Example of 3-D Plot



WIBR Bioinformatics Course, © Whitehead Institute, 2002

Clustering Algorithms

(Adapted from Brazma, 2000)



Hierarchical methods

(Adapted from Dudoit and Gentleman, 2002)

- Produces a tree or dendogram
- Don't need to specify how many clusters
- The tree can be built in two distinct ways
 - bottom-up: agglomerative clustering
 - top-down: divisive clustering

Agglomerative methods

(Adapted from Dudoit and Gentleman, 2002)

- Start with *n* mRNA sample clusters
- At each step, merge two closest clusters using a measure of between-cluster dissimilarity reflecting shape of the clusters
- Between-cluster dissimilarity measures
 - Unweighted Pair Group Method with Arithmetic mean (UPGMA): average of pairwise dissimilarities
 - Single-link: minimum of pairwise dissimilarities
 - Complete-link: maximum of pairwise dissimilarities

Divisive methods

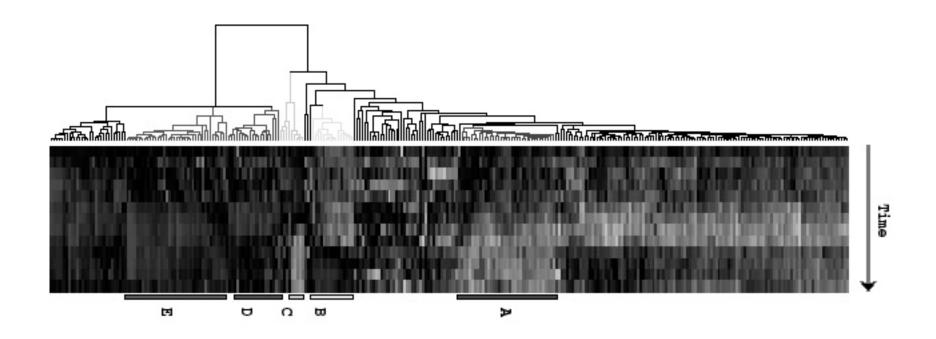
(Adapted from Dudoit and Gentleman, 2002)

- Start with only one cluster
- At each step, split clusters into parts
- Advantages: obtain main structure of the data, i.e., focus on upper levels of dendogram
- Disadvantages: computational difficulties when considering all possible divisions into two groups

Hierarchical Clustering

- Agglomerative single expression profiles are joined to form groups....forming a single tree
 - Pairwise distance matrix is calculated for all genes to be clustered
 - Distance matrix is searched for the 2 most similar genes or clusters
 - Two selected clusters are merged to produce new cluster
 - _ Distances calculated between this new cluster and all other clusters

Dendogram



Eisen et al 1998

K-means Clustering

- Divisive good if you know the number (*k*) of clusters to be represented in the data
 - Initial objects randomly assigned to one of k clusters
 - – Average expression vector calculated for each cluster & compute distance between clusters
 - Objects moved between clusters and intra- and intercluster distances are measured with each move
 - Expression vectors for each cluster are recalculated
 - Shuffling proceeds until moving any more objects would make clusters more variable (> intra-cluster distances and decreasing inter-cluster dissimilarity

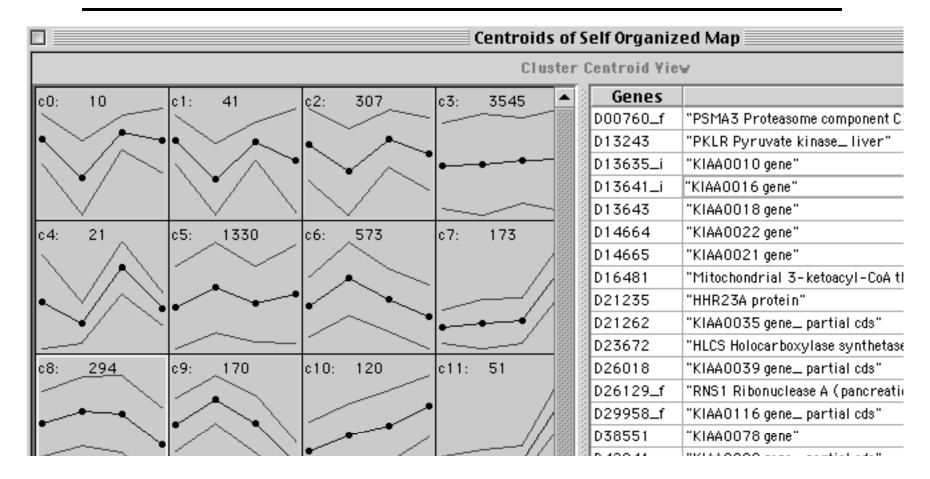
Self Organizing Maps (SOM)

- Neural-network based divisive clustering approach
 - Assigns genes to a series of partitions
 - User defines a geometric configuration for the partitions
 - Random vectors are generated for each partition
 - Vectors are first 'trained' using an iterative process until data most effectively separated

SOMs Continued

- Random vectors are constructed and assigned to each partition
- A gene is picked at random and, using a selected distance metric, the reference vector that is closest to the gene is identified
- The reference vector is then adjusted so that it is more similar to the vector of the assigned gene
- Genes are mapped to relevant partitions depending on the reference vector to which they are most similar

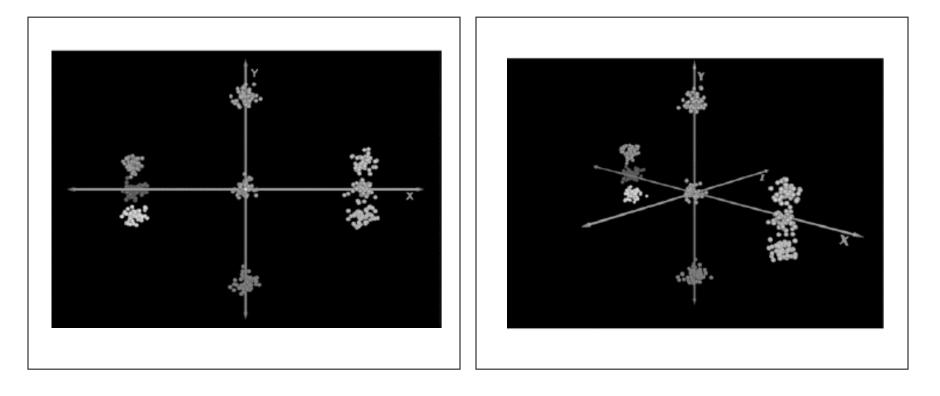
SOMs from GeneCluster



Principal Component Analysis

- Data reduction method
- AKA singular value decomposition
- Used to pick out patterns in data
- Provide projection of complex data sets onto reduced, easily visualized space
- Difficult to define precise clusters but can give you an idea of # of clusters for SOMs or k-means

Principal Component Analysis



Quackenbush 2001

Quackenbush 2001

"One must remember that the results of any analysis have to be evaluated in the context of other biological knowledge."

Supervised Learning

- Useful if you have some previous information about which genes are expected to cluster together
- Support Vector Machine (SVM)
- Start with training set (eg. positive and negative examples)
- SVM learns to distinguish between members and non-members of a class

Warnings

- Classification is dependent on
 - clustering method used
 - normalization of data
 - measure of similarity

Citations

- Brazma A and Vilo J. Minireview: Gene expression data analysis. *FEBS Letters* 480:17-24, 2000.
- Quackenbush J. Computational Analysis of Microarray Data. *Nature Review* | *Genetics* 2:418-427, 2001.
- Dudoit S and Gentleman R. Classification in microarray experiments. Statistics and Genomics Short Course -Lecture 5, January 2002 (http://www.bioconductor.org/workshop.html)

Local Tools

- GeneCluster (WIBR)
- Cluster & TreeView (Eisen)
- GeneSpring (Silicon Genetics)
- Spotfire (Spotfire)
- R Statistics Package
- Matlab

- http://www.jax.org/research/churchill/software/anova/

Lists of Tools

- Rockefeller University
 - <u>http://linkage.rockefeller.edu/wli/microarray/soft.html</u>
- R Statistics Package Microarry Tools
 - <u>http://www.stat.uni-muenchen.de/~strimmer/rexpress.html</u>
- Bioconductor Project
 - <u>http://www.bioconductor.org/</u>
- EBI
 - http://ep.ebi.ac.uk/Links.html, http://ep.ebi.ac.uk/EP/