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Course Syllabus

Sequence Analysis I. Pairwise alignments, database searching including
BLAST (FL) [1, 2, 3]

Sequence Analysis II. Database searching (continued), Pattern searching(FL)[7]
No Class - Martin Luther King Holiday

Sequence Analysis III. Hidden Markov models, gene finding algorithms (FL)[8]

Computational Methods I. Genomic Resources and Unix (GB)
Computational Methods II. Sequence analysis with Perl. (GB)

No Class - President's Birthday

Computational Methods III. Sequence analysis with Perl and BioPerl (GB)

Proteins I. Multiple sequence alignments, phylogenetic trees (RL) [4, 6]
Proteins II. Profile searches of databases, revealing protein motifs (RL) [9]
Proteins III.Structural Genomics:structural comparisons and predictions (RL)

Microarrays: designing chips, clustering methods (FL)
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Today’s Outline

* Intro
e Designing microarrays
 Working with microarray data
— Normalization
— Analysis

e Distance metrics

e Clustering methods
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Research Trends

Sequence

Y

Function
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How are genes regulated?

How do genes interact?

What are the functional roles of
different genes?

How does expression level of a
gene differ in different tissues?



Transcriptional Profiling

(Adapted from Quackenbush 2001)

e Study of patterns of gene expression across many
experiments that survey a wide array of cellular
responses, phenotypes and conditions

* Simple analysis - what’s up/down regulated?

* More interesting - identify patterns of expression
for 1nsight into function, etc.
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Microarray Data

Collect data on n DNA samples (e.g. rows, genes, promotors,
exons, etc.) for p mRNA samples of tissues or experimental

conditions (eg. columns, time course, pathogen exposure,
mating type, etc)

11 X12 X1p
Matrix (nx p) = X X5, Xy,
X, Xpp  eeee Xy
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Multivariate Analysis

Concerned with datasets with more than one response
variable for each observational or experimental unit (e.g.
matrix X with n rows (genes) and p columns (tissue

types))

Hierarchical (phylogenetic trees) vs non-hierarchical (k-
means)

Divisive vs agglomerative

Supervised vs unsupervised
— Divide cases into groups vs discover structure of data
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Multivariate Methods

e C(Cluster analysis - discover groupings among cases of X
— Hierarchical produces dendograms
— K-means - choose a prespecified number of clusters
— Self Organizing Maps

* Principal component analysis (PCA)

— Linear method, unsupervised, seeks linear
combinations of the columns of X with maximal (or
minimal) variance (graphical)
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DNA Microarrays
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Designing a Microarray

Select Sequences

|

* Download sequences from Entrez

* Predict genes from genomic sequence

 Locate/predict specific region of
genes (e.g. promoter, exons, etc)

Predict primers

WIBR Primer3 (Rozen & Skaletsky)

|

Selft BLAST
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Sources of variation

wanted vs unwanted

/N

Across experimental conditions Chip, slide
Hybridization conditions

Imaging
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Normalization

(Adapted from Quackenbush 2001)

Compensate for experimental variability

e Total intensity normalization

— assumes the quantity of initial mRNA 1s same
for labelled samples

* Normalization using regression technique
* Normalization using ratio statistics
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After normalization

(Adapted from Quackenbush 2001)

Data reported as an “expression ratio” or as a logarithm of
the expression ratio

Expression ratio 1s the normalized value of the expression
level for a particular gene in the query sample divided by
its normalized value for the control

Use log of expression ratio for easier comparisons
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Distance Metrics

(Adapted from Quackenbush 2001)

* Metric distances - d;; between two vectors, i and
J,must obey several rules:

— Distance must be positive definite, dij =0

— Distance must be symmetric, dl-j = dji, so that the distance

from i to j is the same as the distance from j to i.
— An object 1s zero distance from itself, d; = 0.

— When considering three objects, i, j and k, d; < d;; + d.
This 1s sometimes called the ‘triangle’ rule.
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Distance Metrics

(Adapted from Quackenbush 2001)

e The most common metric distance 1s Euclidean
distance,which 1s a generalization of the familiar
Pythagorean theorem. In a three-dimensional space, the
Euclidean distance, d,,, between two points, (x;,x,,x;) and

(¥1,Y2,Y3) 18 given by:

dyp = ‘\/(Xl - yD? + (xp - y9)% + (x3— y3)?

e where (x,,x,,x;) are the usual Cartesian coordinates (x,y,7).
1742543 y
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More on distance

(Adapted from Quackenbush 2001)

The generalization of this to higher-dimensional
expression spaces 1s straightforward.

I1
d= .21 (x; = y)° .
i=

where x; and y,; are the measured expression values,
respectively, for genes X and Y 1n experiment 7, and
the summation runs over the n experiments under
analysis.
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Semi-metric distances

(Adapted from Quackenbush 2001)

e Distance measures that obey the first three
consistency rules, but fail to maintain the triangle
rule are referred to as semi-metric.

e Pearson correlation coefficient 1s most commonly
used semi-metric distance measure
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Example of 3-D Plot

|

5AS: Rotating Plot SASUSER.TESTDAT
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Clustering Algorithms

(Adapted from Brazma, 2000)

Unsupervised Supervised
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Hierarchical methods

(Adapted from Dudoit and Gentleman, 2002)

* Produces a tree or dendogram
 Don’t need to specity how many clusters
e The tree can be built in two distinct ways

— bottom-up: agglomerative clustering

— top-down: divisive clustering
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Agglomerative methods

(Adapted from Dudoit and Gentleman, 2002)

Start with n mRNA sample clusters

At each step, merge two closest clusters using a
measure of between-cluster dissimilarity reflecting
shape of the clusters

Between-cluster dissimilarity measures

— Unweighted Pair Group Method with Arithmetic mean
(UPGMA): average of pairwise dissimilarities

— Single-link: minimum of pairwise dissimilarities

— Complete-link: maximum of pairwise dissimilarities
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Divisive methods

(Adapted from Dudoit and Gentleman, 2002)

Start with only one cluster
At each step, split clusters into parts

Advantages: obtain main structure of the data, 1.e.,
focus on upper levels of dendogram

Disadvantages: computational difficulties when
considering all possible divisions into two groups
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Hierarchical Clustering

(Adapted from Quackenbush 2001)

* Agglomerative - single expression profiles are
joined to form groups....forming a single tree

— Pairwise distance matrix 1s calculated for all genes to
be clustered

— — Distance matrix 1s searched for the 2 most similar genes
or clusters

A

— Two selected clusters are merged to produce new
cluster

— Distances calculated between this new cluster and all
other clusters
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Dendogram

Eisen et al 1998
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K-means Clustering

(Adapted from Quackenbush 2001)

* Divisive - good if you know the number (k) of
clusters to be represented in the data

— Initial objects randomly assigned to one of k clusters

— Average expression vector calculated for each cluster &
compute distance between clusters

+ — Objects moved between clusters and intra- and inter-
cluster distances are measured with each move

— Expression vectors for each cluster are recalculated

— Shuffling proceeds until moving any more objects
would make clusters more variable (> intra-cluster
distances and decreasing inter-cluster dissimilarity
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Self Organizing Maps (SOM)

(Adapted from Quackenbush 2001)

* Neural-network based divisive clustering
approach

— Assigns genes to a series of partitions

— User defines a geometric configuration for the
partitions

— Random vectors are generated for each partition

— Vectors are first ‘trained’ using an iterative process
until data most effectively separated
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SOMs Continued

Random vectors are constructed and assigned to each
partition

A gene 1s picked at random and, using a selected distance
metric, the reference vector that 1s closest to the gene 1s
1dentified

The reference vector 1s then adjusted so that it 1s more
similar to the vector of the assigned gene

Genes are mapped to relevant partitions depending on the
reference vector to which they are most similar
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SOMs from GeneCluster
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Principal Component Analysis

(Adapted from Quackenbush 2001)

Data reduction method
AKA singular value decomposition
Used to pick out patterns 1n data

Provide projection of complex data sets
onto reduced, easily visualized space

Ditficult to define precise clusters but can
give you an 1dea of # of clusters for SOMs
or k-means
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Principal Component Analysis

Quackenbush 2001
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Quackenbush 2001

“One must remember that the results of any
analysis have to be evaluated in the context
of other biological knowledge.”
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Supervised Learning

(Adapted from Quackenbush 2001)

Useftul if you have some previous information
about which genes are expected to cluster together

Support Vector Machine (SVM)

Start with training set (eg. positive and negative
examples)

SVM learns to distinguish between members and
non-members of a class
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Warnings

(Adapted from Quackenbush 2001)

e Classification 1s dependent on
— clustering method used
— normalization of data
— measure of similarity
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[.ocal Tools

GeneCluster (WIBR)

Cluster & TreeView (Eisen)
GeneSpring (Silicon Genetics)
Spotfire (Spotfire)

R Statistics Package

Matlab

— http://www.jax.org/research/churchill/software/anova/
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[.ists of Tools

Rockefeller University

— http://linkage.rockefeller.edu/wli/microarray/soft.html

R Statistics Package Microarry Tools

— http://www.stat.uni-muenchen.de/~strimmer/rexpress.html

Bioconductor Project

— http:// www.bioconductor.org/

EBI

— http://ep.ebi.ac.uk/Links.html, http://ep.ebi.ac.uk/EP/
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