

Bioinformatics for Biologists

Comparative Protein Analysis:

Part II. Sequence Pattern and Profile Database Searching

Robert Latek, PhD Sr. Bioinformatics Scientist Whitehead Institute for Biomedical Research

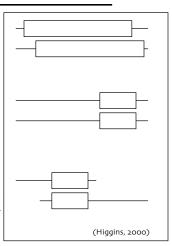
Knowledge Exploration

- Phylogenetic Trees and Multiple Sequence Alignments are important tools to understand relationships between known sequences.
- How do you apply what you know about a group of sequences to finding additional, related sequences?
- What can the relationship between your sequences and newly discovered tell you about their function?
- Discovering sequence Families

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

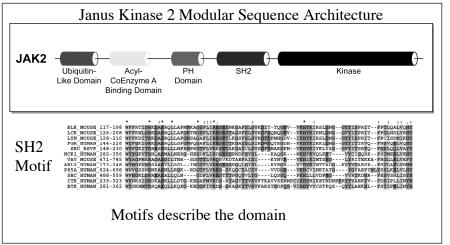
Syllabus

(Finding Family Members)


- Protein Families
 - Protein Domains
 - Family Databases & Searches
- Searching for Homologous Sequences Using Patterns/Profiles
 - Pattern Searches
 - Patscan
 - Profile Searches
 - PSI-BLAST/HMMER2

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

3

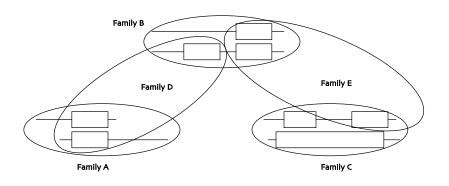

Proteins As Modules

- Proteins are derived from a limited number of basic building blocks (**Domains**)
- Evolution has shuffled these modules giving rise to a diverse repertoire of protein sequences
- As a result, proteins can share a global or local relationship

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

Protein Domains

WIBR Bioinformatics Course, © Whitehead Institute, October 2003


5

Protein Families

- **Protein Family** a group of proteins that share a common function and/or structure, that are potentially derived from a common ancestor (set of homologous proteins)
- Characterizing a Family Compare the sequence and structure patterns of the family members to reveal shared characteristics that potentially describe common biological properties
- Motif/Domain sequence and/or structure patterns common to protein family members

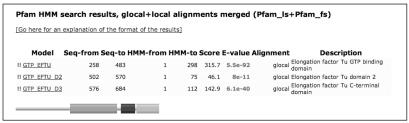
WIBR Bioinformatics Course, $\hbox{@}\>\>$ Whitehead Institute, October 2003

Protein Families

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

7

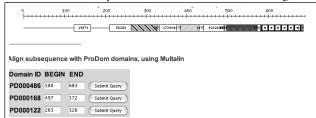
Family Database Resources


- Curated Databases*
 - Proteins are placed into families with which they share a specific sequence pattern
- Clustering Databases*
 - Sequence similarity-based without the prior knowledge of a specific patterns
- **Derived** Databases*
 - Pool other databases into one central resource
- Search and Browse

*(Higgins, 2000)

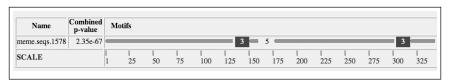
WIBR Bioinformatics Course, $@\:$ Whitehead Institute, October 2003

Curated Family Databases


- **Pfam** (http://pfam.wustl.edu/hmmsearch.shtml/) **
 - Uses manually constructed seed alignments and PSSM to automatically extract domains
 - db of protein families and corresponding profile-HMMs
 - Searches report e-value and bits score
- **Prosite** (http://www.expasy.ch/tools/scanprosite/)
 - Hit or Miss -> no stats
- PRINTS (http://www.bioinf.man.ac.uk/fingerPRINTScan/)

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

Clustering Family Databases


- Search a database against itself and cluster similar sequences into families
- **ProDom** (http://prodes.toulouse.inra.fr/prodom/doc/prodom.html)
 - Searchable against MSAs and consensus sequences
- Protomap (http://protomap.cornell.edu/)
 - Swiss-Prot based and provides a tree-like view of clustering

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

Derived Family Databases

- Databases that utilize protein family groupings provided by other resources
- Blocks Search and Make (http://blocks.fhcrc.org/blocks/)
 - Uses Protomap system for finding blocks that are indicative of a protein family (GIBBS/MOTIF)
- **Proclass** (http://pir.georgetown.edu/gfserver/proclass.html)
 - Combines families from several resources using a neural network-based system (relationships)
- MEME (http://meme.sdsc.edu/meme/website/intro.html)

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

11

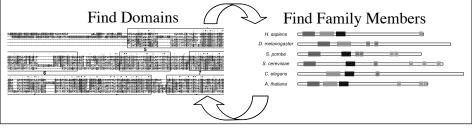
Searching Family Databases

- BLAST searches provide a great deal of information, but it is difficult to select out the important sequences (listed by score, not family)
- Family searches can give an immediate indication of a protein's classification/function
- Use Family Database search tools to identify domains and family members

WIBR Bioinformatics Course, $@\:$ Whitehead Institute, October 2003

Syllabus

(Finding Family Members)


- Protein Families
 - Protein Domains
 - Family Databases & Searches
- **Searching for Homologous Sequences** (Finding Family Members)
 - Pattern Searches
 - Patscan
 - Profile Searches
 - PSI-BLAST/HMMER2

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

13

Creating Protein Families

- Use domains to identify family members
 - Use a sequence to search a database and characterize a pattern/profile
 - Use a specific pattern/profile to identify homologous sequences (family members)

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

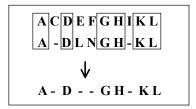
Patterns & Profiles

- Techniques for searching sequence databases to uncover common domains/motifs of biological significance that categorize a protein into a family
- **Pattern** a deterministic syntax that describes multiple combinations of possible residues within a protein string
- **Profile** probabilistic generalizations that assign to every segment position, a probability that each of the 20 aa will occur

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

15

Discovery Algorithms


- Pattern Driven Methods
 - Enumerate all possible patterns in solution space and try matching them to a set of sequences

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

Discovery Algorithms

- Sequence Driven Methods
 - Build up a pattern by pair-wise comparisons of input sequences, storing positions in common, removing positions that are different

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

17

Pattern Building

- Find patterns like "aa1 xx aa2 xxxx aa3"
 - Definition of a non-contiguous motif

```
1. CYD CAFTLRQSAVMHKHAREH
2. CATY CRTAIDTVKNSLKHHSAH
3. CWDGGCGISVERMDTVHKHDTVH
4 CYC CSDHMKKDAVERMHKKDH
5. CNMF CMPIFRQNSLAREHERMH
6. CLNNTCTAFWRQKKDDTVHNSLH

C xxxx C xxxx [LIVMFW] xxxxxxxx H xxxxx H
```

Define/Search A Motif http://us.expasy.org/tools/scanprosite/

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

Pattern Properties

- Specification
 - a single residue K, set of residues (KPR), exclusion {KPR},
 wildcards X, varying lengths x(3,6) -> variable gap lengths
- General Syntax
 - C-x(2,4)-C-x(3)-[LIVMFYWC]-x(8)-H-x(3,5)-H
- Patscan Syntax
 - C 2...4 C 3...3 any(LIVMFYWC) 8...8 H 3...5 H
- Pattern Database Searching
 - |%scan_for_matches -p pattern_file < /db0/Data/nr > output_file

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

19

Sequence Pattern Concerns

- Pattern descriptors must allow for approximate matching by defining an acceptable distance between a pattern and a potential hit
 - Weigh the sensitivity and specificity of a pattern
- What is the likelihood that a pattern would randomly occur?

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

Sequence Profiles

- **Consensus** mathematical probability that an aa will be located at a given position
- Probabilistic pattern constructed from a MSA
- Opportunity to assign penalties for insertions and deletions, but not well suited for variable gap lengths
- **PSSM** (Position Specific Scoring Matrix)
 - Represents the sequence profile in tabular form
 - Columns of weights for every aa corresponding to each column of a MSA

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

2

1. I	ті	s			P	S	S	N	1	E>	(C	in	۱p	le	•					
2. T 3 V	D L	S G	(i.e. Distribution of aa in an MSA column)											_						
4. I	T I	r G											iti (
5. V	G F												S: 1	11	_ 3					
6. I 7. T	ЕL	T S								PS	SM	[
	T L	~	↓																	
P																				
O	١.		_	_	_	_		,			.,	.,	_		_			.,	***	.,
1	A 8	-2	D 5	E 4	F 5	G 5	H -4	I 24	K 0	L 15	M 13	N 1	P 1	Q 1	-7	2	T 22	V 21	-18	-6
	•	-2	"	•	"	3		4		13	13	1	1	1	- '	_	22	21	-10	-0
2	13	-5	24	18	-18	19	7	1	7	-7	-4	14	11	10	-1	9	29	3	-28	-14
3	5	-5	3	4	13	4	2	8	-4	14	12	8	-5	0	-10	0	10	10	-1	5
11				1			1		1	1			1				1		1	

PSSM Properties

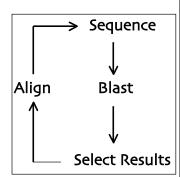
- Score-based sequence representations for searching databases
 - Calculations determined by Log odds score
- Goal
 - Limit the diversity in each column to improve reliability
- Problems
 - Differing length gaps between conserved positions (unlike patterns)

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

23

PSSM Weighting

- Differentially weigh sequences to reduce redundancy from non-representative sampling
 - Similar sequences get low weights, diverged sequences get higher weights


WIBR Bioinformatics Course, $\hbox{@}\>\>$ Whitehead Institute, October 2003

PSI-BLAST Implementation

PSI-BLAST

http://www.ncbi.nlm.nih.gov/BLAST/

- Start with a sequence, BLAST it, align select results to query sequence, estimate a profile with the MSA, search DB with the profile - constructs PSSM
- Iterate until process stabilizes
- Focus on domains, not entire sequences
- Greatly improves sensitivity

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

25

PSI-BLAST Sample Output

Sequences with E-value WORSE than threshold <u>gi|9629055|ref|NP_044074.1|</u> (NC_001731) MC123R [Molluscum contag... 0.16 <u>qi|8176554|qb|AAB35488.2|</u> (S79774) bile salt-dependent lipase; B... <u>gi|4502771|ref|NP_001798.1|</u> (NM_001807) carboxyl ester lipase (b... gi|231629|sp|P19835|BAL_HUMAN
Bile-salt-activated lipase precurs... 0.89 $\underline{\text{gi}|15242929|\text{ref}|\text{NP}\underline{200612.1}|} \quad (\text{NM}\underline{125189}) \text{ putative protein [Arabi...}$ 1.1
 qi|9759529|dbi|BAB10995.1|
 (AB024029) gene_id:K21L19.3~unknown p...

 qi|180482|qb|AAA52014.1|
 (M85201) cholesterol esterase [Homo sap...
 1.3 1.8 GI | 118706| Sp| P21173| DNAA MICLU | Chromosomal replication initiator...
GI | 126679| Sp| P16110| LEG3 MOUSE | GALECTIN-3 (GALACTOSE-SPECIFIC LE... 4.6 <u>qi|52851|emb|CAA34206.1|</u> (X16074) L-34 protein (AA 1-264) [Mus sp.] gi|539907|pir||A45983
lactose-binding lectin Mac-2 - mouse $\underline{\text{qi}|387111|\text{qb}|\text{AAA37311.1}|} \quad \text{(JO3723) carbohydrate binding protein 3...}$ gi|9506427|ref|NP_062019.1| (NM_019146) bassoon [Rattus norvegic...

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

HMM Building

- **Hidden Markov Models** are Statistical methods that considers all the possible combinations of matches, mismatches, and gaps to generate a consensus (Higgins, 2000)
- Sequence ordering and alignments are not necessary at the onset (but in many cases alignments <u>are</u> recommended)
- Ideally use at least 20 sequences in the training set to build a model
- Calibration prevents over-fitting training set (i.e. Ala scan)
- Generate a model (profile/PSSM), then search a database with it

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

27

HMM Implementation

- **HMMER2** (http://hmmer.wustl.edu/)
 - Determine which sequences to include/exclude
 - Perform alignment, select domain, excise ends, manually refine MSA (pre-aligned sequences better)
 - Build profile
 - | %hmmbuild [-options] <hmmfile output> <alignment file>
 - Calibrate profile (re-calc. Parameters by making a random db)
 - | %hmmcalibrate [-options] <hmmfile>
 - Search database
 - | %hmmsearch [-options] <hmmfile> <database file> > out

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

HMMER2 Output

- Hmmsearch returns evalues and bits scores
- Repeat process with selected results
 - Unfortunately need to extract sequences from the results and manually perform MSA before beginning next round of iteration

```
HMMER 2.2g (August 2001)
Copyright (C) 1992-2001 HHMI/Washington University School of Medicine Freely distributed under the GNU General Public License (GPL)

HMM file: pfam_had.hmm [Hydrolase]
Sequence database: /cluster/db/D/Data/nr
per-sequence score cutoff: [none]
per-domain score cutoff: [none]
per-domain score cutoff: [none]
per-domain Eval cutoff: [none]

Query HMM: Hydrolase
Accession: PF00702
Description: haloacid dehalogenase-like hydrolase
[HMM has been calibrated; E-values are empirical estimates]

Scores for complete sequences (score includes all domains):
Sequence Description Score E-value N

gill 1312631refiNP_417844.11 phosphoglycolat 168.4 2.9e.45 1
gil28114648irciNP_709158.11
gil2810488irciNP_289924.1 phosphoglycolat 167.8 4.2e.45 1
gil26249979[refiNP_756019.11] Phosphoglycolat 166.4 1.1e.44 1
```

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

29

Patterns vs. Profiles

- Patterns
 - Easy to understand (human-readable)
 - Account for different length gaps
- Profiles
 - Sensitivity, better signal to noise ratio
 - Teachable

WIBR Bioinformatics Course, $\ensuremath{\mathbb{C}}$ Whitehead Institute, October 2003

Demonstration

- Family/Domain Search
- Pattern Search
 - scan_for_matches (Patscan)
- Profile Search
 - PSI-BLAST
 - HMMER2

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

31

References

- Bioinformatics: Sequence and genome Analysis. David W. Mount. CSHL Press, 2001.
- Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. Andreas D. Baxevanis and B.F. Francis Ouellete. Wiley Interscience, 2001.
- Bioinformatics: Sequence, structure, and databanks. Des Higgins and Willie Taylor. Oxford University Press, 2000.

WIBR Bioinformatics Course, $\tiny\textcircled{\tiny{0}}$ Whitehead Institute, October 2003