-ﬂ@ﬁfgﬁ

Bioinformatics for Biologists
Computational Methods 1II:
Sequence Analysis with Perl

George Bell, Ph.D.
WIBR Biocomputing Group

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

Sequence Analysis with Perl

¢ Introduction

* Input/output

* Variables

* Functions
 Control structures
» Comparisons

+ Sample scripts

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

Objectives

+ write, modify, and run simple Perl scripts

* design customized and streamlined
sequence manipulation and analysis
pipelines with Perl scripts

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

Why Perl?

Good for text processing

(sequences and data)

Easy to learn and quick to write

Built from good parts of lots of languages/tools
Lots of bioinformatics tools available

Open source: free for Unix, PC, and Mac
TMTOWTDI

'WIBR Bioinformatics Course, © Whitehead Institute, October 2003

A first Perl program

* Create this program and call it hey.pl
#!/usr/local/bin/perl -w

The Perl “Hey” program
print "What is your name? ";
chomp ($name = <STDIN>) ;

print “Hey, $name, welcome to the
Bioinformatics course.\n”;

* Torun: perl hey.pl or
e Torun: chmod +x hey.pl
hey.pl

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

Perl Input/Output

» Types of input:
— keyboard (STDIN)
— files
» Types of output:
— screen (STDOUT)
— files
 Unix redirection can be very helpful
ex:hey.pl > hey output. txt

'WIBR Bioinformatics Course, © Whitehead Institute, October 2003

Variables

* Scalar variables start with $
$numSeq = 5; # number; no parentheses
$segName = “GAL4”; # “string”; use parentheses
$level = -3.75; # numbers can be decimals too
print “The level of $seqName is $level\n”;

$ default input variable

* Arrays (lists of scalar variables) start with @:

Qgenes = (“BMP2”, “GATA-2”, “Fezl”);

Qorfs = (395, 475, 431);

print “The ORF of $genes[0] is $orfs[0] nt.”;
The ORF of BMP2 is 395 nt.

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

Perl functions - a sample

print tr/// closedir open m//

chomp mkdir split close die

length chdir join chmod rename
substr opendir pop uc use
s/// readdir push lc sort

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

Control Structures 1

if (condition) # note that 0, “”, and (undefined) are false
S
1
do this; then this;. . .
¥
else # optional; ‘if” can be used alone; elsif also possible

{
¥

if ($Sexp >= 2)
{

print “The gene $seq is up-regulated ($exp)”;
}

do this instead,

gene is up-regulated

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

Control Structures 2
while (condition)
{
do this;
then this;. . .

}

while ($orfLength > 100)

{ # Add to table
print “$seq\t”; # “\t” = tab
print “$orfLength\n”; # “\n” = newline

}

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

Control Structures 3

for (initialize; test; increment)
{
do this;. . .

}

for ($i = 0; $i <= S#fsegs; $i++)

$#seqs = index of the last element in @segs

{ # Add elements of @seqs and Qorf to table
print “$seq[$il\t”;
print “$orf[$i]\n”;

}

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

Arithmetic & numeric comparisons

* Arithmetic operators: + - / * %
* Notation: $i = $i + 1; $i += 1; $i++;
* Comparisons: >,<,<=,>= == I=
if ($numl '= $num2)
{
print “$numl and $num2 are different”;
}
* Note that == is very different from =
== used as a test: if ($num == 50)

= used to assign a variable: $num = 50

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

String comparisons

» Choices: eq, ne

if ($genel ne $gene2)

{
print “$genel and $gene2 are different”;
}
else
{
print “$genel and $gene2 are the same”;
}

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

Multiple comparisons

« AND &&

* OR I

if ($exp > 2 || ($exp > 1.5 && $numExp > 10)
{

print “Gene $gene is up-regulated”;

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

Filehandles

To read from or write to a file in Perl, it first needs to be opened.
In general, open (filehandle, filename);

Filehandles can serve at least three purposes:

open (IN, $file); # Open for input

open (OUT, ">$file"); # Open for output

open (OUT, ">>$file"); # Open for appending

Then, get data all at once @lines = <IN>;

or one line at a time

while <IN> {

$line = $_; do stuff with this line;
print OUT “This line: $line”; }

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

Embedding shell commands

« use backquotes (') around shell command

 example using EMBOSS to reverse-complement:
‘revseq mySeq.tfa mySeq_rc.tfa’;

 Capture stdout from shell command if desired
+ EMBOSS qualifier “-filter” prints to stdout
$date = ‘date’;
$rev_comp = ‘revseq mySeq.tfa -filter';
print “$date”;
print “Reverse complement:\n$rev_comp\n”;

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

Programming issues

* What should it do and when is it “finished”?
* Who will be using/updating your software?
— Reusability
— Commenting
— Error checking
* Development vs. execution time?
* Debugging tools: printing and commenting
* Beware of OBOB ("off-by-one bug")

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

Example: patscan_batch.pl

#!/usr/local/bin/perl -w
Run patscan on all segs in a folder

$myDir = “/home/elvis/seqs”;

$patFile = “/home/elvis/polyA.pat”;

chdir ($myDir) ; # Go to $myDir
opendir (DIR, $myDir); # Open $myDir

foreach $seqFile (sort readdir (DIR))
{
if ($seqFile =~ /\.fa/) # if file ends in .fa
{
print “Processing $seqFile\n”;
SoutFile = $seqFile; # Create $outFile name
$outFile =~ s/\.fa/\.out/; # s/old/new/;
#4444 44444 Run PATSCAN ##### #4444 ##
‘scan_for_matches $patFile < $seqFile > patscan/$outFile’;
}
} 18
WIBR Bioinformatics Course, © Whitehead Institute, October 2003

Example: oligo analysis

sample fasta sequence:
>gi|16493450|gb|BB659629.1|BB659629

GCCTGCTTGAGTTTTGAAGTCTTGGAGCCACAGAA
AGCACTGGCCAGAGGAGAGGTAATCACTTCTAATG
CCAGGCCTGCTGTGCAGTGCGCATGTGTGATCTCA
GTCTGCTTCTGCCCTAGCTAATGAAGGCATGGACA
ATGGAATAGCCACATGGCAGCACCGGAAAACAAGC
TTACTTCTGCAGTACACAGCCTGCTTTGCCTGATT
TCTGTCCACTGG

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

Basic steps for oligos.pl

Open fasta sequence

Get raw sequence

Extract oligos

Analyze oligos

Print out results

(Modify script to analyze multiple seqs)

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

oligos.pl: part 1

#!/usr/local/bin/perl -w
Extract oligos from a sequence and analyze %GC

$seq = “mySeq.fa"; # input sequence

$mer = 35; # length of oligo to make
$start = 5; # nt to start oligos

$end = 11; # nt to stop oligos

Get continuous sequence from sequence file
open (SEQ, $seq) || die "cannot open $seq: $!";
@seq = <SEQ>; # make array of lines

$defline = $seq[0];
$seq[0] = "";

$seq = join ("", @seq);
$seq =~ s/\s*//g;

get defline

delete defline

join($glue, @list)
delete whitespace

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

oligos.pl: part 2

$seqlength = length ($seq);
print "Oligos ($mer mers) for $defline
($seqlLength nt) and % GC content\n";

Beware of OBOB
for ($i = $start - 1; $i < $end - 1; $i++)
{
oligo = substr(seq, start, length);
$_ = substr($seq, $i, $mer);
$nt = $i + 1;

$numGC = tr/GC//; # count GCs
$pcGC = 100 * $numGC / $mer; # find %GC
print "$nt\t$_\t$pcGC\n";

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

Summary

* Input/output
* Variables
* Functions (scalars and arrays)
 Control structures
* Comparisons
» Sample scripts:
— patscan_batch.pl
— oligos.pl

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

Demo scripts on the web site

* hey.pl

* input and output options
* patscan_batch.pl

* rev_comp.pl

* oligos.pl

* parse_genbank.pl

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

