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e Introduction

 Working with microarray data
— Normalization
— Analysis
e Distance metrics

e Clustering methods
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Research Trends

Genomics

Sequence

\ 4

Function
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How are genes regulated?

How do genes interact?

What are the functional roles of
different genes?

How does expression level of a
gene differ in different tissues?



Transcriptional Profiling

(Adapted from Quackenbush 2001)

e Study of patterns of gene expression across many
experiments that survey a wide array of cellular responses,
phenotypes and conditions

 Simple analysis - what’s up/down regulated?

* More interesting - identify patterns of expression for
insight into function, etc.
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Microarray Data

Collect data on n DNA samples (e.g. rows, genes, promotors,
exons, etc.) for p mRNA samples of tissues or experimental
conditions (eg. columns, time course, pathogen exposure,
mating type, etc)

Matrix (nxp) =

xnl xn2 oo oo x
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Multivariate Analysis

Concerned with datasets with more than one response
variable for each observational or experimental unit (e.g.
matrix X with n rows (genes) and p columns (tissue

types))

Hierarchical (phylogenetic trees) vs non-hierarchical (k-
means)

Divisive vs agglomerative

Supervised vs unsupervised
— Divide cases into groups vs discover structure of data
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Multivariate Methods

e C(Cluster analysis - discover groupings among cases of X
— Hierarchical produces dendograms
— K-means - choose a prespecified number of clusters
— Self Organizing Maps

* Principal component analysis (PCA)

— Linear method, unsupervised, seeks linear combinations
of the columns of X with maximal (or minimal)
variance (graphical)
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DNA Microarrays

Build the chip Prepare RNA

Hybridize array

Collect results
|

< Norr*nalize >
< Analyze >
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Data Normalization

e Correct for systematic bias in data

— Avoid it, recognize it, correct it, discard
outliers

* First step for comparing data from one array
to another
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Sources of variation

wanted vs unwanted

/N

Across experimental Chip, slide
conditions e .
Hybridization conditions

Imaging
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Normalization Approaches

Compensate for experimental variability

Housekeeping genes
Spiked 1n controls

Total intensity normalization

LOWESS correction
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Expression Ratios

Let R = a query sample

Let G = a reference sample

Then the ratio, T, = R/G,

Need to transform these to log,
Examples: T=2/1=2;T=1/2=.5
Examples: log,(2) = 1; log,(.5) = -1
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Total Intensity Normalization

(Adapted from Quackenbush 2002)

AS sumptions: (1) start with equal amounts of RNA for

the two samples; (2) arrayed elements represent random
sample of genes in the organism

Narray
/
a. N ; Ri C. ! RZ 1 R .
total = Narray T — —
G. ' /
; ! : Gi rotalh G

b. Rescale intensities:

Gl ) i GRS
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LOWESS - The R-I Plot

(Adapted from Quackenbush 2002)

e Data exhibit an intensity-dependent structure

e Uncertainty in intensity and ratio measurements is greater
at lower intensities

R-I plot raw data R-1 plot following lowess

log(RIG)
I

logx(RIG)
(=3

logy(R*G)
loan(R*G)
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LOWESS - The R-I Plot

(Adapted from Quackenbush 2002)

Plot log,(R/G) ratio as a function of log,,(R*G) product
intensity

Shows intensity specific artifacts in the measurements of
ratios

Correct using a local weighted linear regression
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LOWESS Normalization

(From Quackenbush 2002)

If we set x; =log, ,(R;*G;) and y; = log,(R/G;), lowess first esti-
mates y(x;), the dependence of the log,(ratio) on the log,,(inten-
sity), and then uses this function, point by point, to correct the
measured log,(ratio) values so that

log,(T)=log,(T)-y(x)=log,(T,)-log,(2*)),

or equivalently,

log,(T/)=log. [T *——| ~log. [ !
0g,(T;)=log, |T * Sy(x) —1l0g, G) ") |

As with the other normalization methods, we can make this
equation equivalent to a transformation on the intensities, where

G;: G, 2% and R;: R..
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After normalization

(Adapted from Quackenbush 2001)

Data reported as an “expression ratio” or as a logarithm of
the expression ratio

Expression ratio is the normalized value of the expression
level for a particular gene in the query sample divided by
its normalized value for the control

Use log of expression ratio for easier comparisons
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Distance Metrics

(Adapted from Quackenbush 2001)

* Metric distances - d;; between two vectors, i and j,
must obey several rules:

— Distance must be positive definite, dij = 0

— Distance must be symmetric, d;; = d;, so that the distance

from i to j 1s the same as the distance from j to i.
— An object 1s zero distance from itself, d; = 0.

— When considering three objects, i, j and k, d;, < d;; + d.
This 1s sometimes called the ‘triangle’ rule.
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Distance Metrics

(Adapted from Quackenbush 2001)

The most common metric distance is Euclidean distance,which 1s a
generalization of the familiar Pythagorean theorem. In a three-
dimensional space, the Euclidean distance, d,,, between two points,

(x1>x2>x3) and (y19y29y3) iS given by

djz = ‘\/(Xl -y + (g - y2)% + (x3-y3) "

where (x,,x,,x;) are the usual Cartesian coordinates (x,y,z).

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

19



More on distance

(Adapted from Quackenbush 2001)

The generalization of this to higher-dimensional
expression spaces 1s straightforward.

11
d= .21 (x;- ¥)*,
j=

where x; and y, are the measured expression values,
respectively, for genes X and Y 1n experiment 7, and
the summation runs over the n experiments under

analysis.
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Semi-metric distances

(Adapted from Quackenbush 2001)

e Distance measures that obey the first three
consistency rules, but fail to maintain the triangle
rule are referred to as semi-metric.

e Pearson correlation coefficient 1s most commonly
used semi-metric distance measure
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Clustering vs Classification

Unsupervised Supervised
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Hierarchical methods

(Adapted from Dudoit and Gentleman, 2002)

* Produces a tree or dendogram
 Don’t need to specity how many clusters
* The tree can be built in two distinct ways

— bottom-up: agglomerative clustering

— top-down: divisive clustering
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Agglomerative methods

(Adapted from Dudoit and Gentleman, 2002)

Start with n mRNA sample clusters

At each step, merge two closest clusters using a measure of
between-cluster dissimilarity reflecting shape of the
clusters

Between-cluster dissimilarity measures

— Unweighted Pair Group Method with Arithmetic mean (UPGMA):
average of pairwise dissimilarities

— Single-link: minimum of pairwise dissimilarities

— Complete-link: maximum of pairwise dissimilarities
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Divisive methods

(Adapted from Dudoit and Gentleman, 2002)

Start with only one cluster
At each step, split clusters into parts

Advantages: obtain main structure of the data, 1.e., focus
on upper levels of dendogram

Disadvantages: computational difficulties when
considering all possible divisions into two groups

WIBR Bioinformatics Course, © Whitehead Institute, October 2003

25



Hierarchical Clustering

(Adapted from Quackenbush 2001)

o Agglomerative - single expression profiles are joined to
form groups....forming a single tree

— Pairwise distance matrix is calculated for all genes to be
clustered

— — Distance matrix is searched for the 2 most similar genes
or clusters

t — Two selected clusters are merged to produce new
cluster

— Distances calculated between this new cluster and all
other clusters
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Dendogram

Eisen et al 1998
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K-means Clustering

(Adapted from Quackenbush 2001)

* Divisive - good if you know the number (k) of clusters to
be represented in the data

— Initial objects randomly assigned to one of k clusters

— Average expression vector calculated for each cluster &
compute distance between clusters

I — Objects moved between clusters and intra- and inter-
cluster distances are measured with each move

— Expression vectors for each cluster are recalculated

— — Shuffling proceeds until moving any more objects
would make clusters more variable (> intra-cluster
distances and decreasing inter-cluster dissimilarity
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Self Organizing Maps (SOM)

(Adapted from Quackenbush 2001)

* Neural-network based divisive clustering approach

— Assigns genes to a series of partitions
— User defines a geometric configuration for the partitions
— Random vectors are generated for each partition

— Vectors are first ‘trained’ using an iterative process until data most
effectively separated
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SOMs Continued

Random vectors are constructed and assigned to each
partition

A gene 1s picked at random and, using a selected distance
metric, the reference vector that is closest to the gene is
identified

The reference vector 1s then adjusted so that it 1s more
similar to the vector of the assigned gene

Genes are mapped to relevant partitions depending on the
reference vector to which they are most similar
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SOMs from GeneCluster

Centroids of Self Organized Map

Cluster View | Clusters Som Centroids 1_3_42_2.089E5_1 |w]
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e

Clustering
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Principal Component Analysis

(Adapted from Quackenbush 2001)

e Data reduction method
 AKA singular value decomposition
e Used to pick out patterns in data

* Provide projection of complex data sets
onto reduced, easily visualized space

e Difficult to define precise clusters but can
give you an idea of # of clusters for SOMs
or k-means
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Principal Component Analysis

Quackenbush 2001
\ 4
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Quackenbush 2001

“One must remember that the results of any
analysis have to be evaluated in the context
of other biological knowledge.”
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Supervised Learning

(Adapted from Quackenbush 2001)

Useftul if you have some previous information
about which genes are expected to cluster together

Support Vector Machine (SVM)

Start with training set (eg. positive and negative
examples)

SVM learns to distinguish between members and
non-members of a class
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Warnings

(Adapted from Quackenbush 2001)

e (Classification 1s dependent on
— clustering method used
— normalization of data
— measure of similarity
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Available Tools

GeneCluster (WI/MIT Genome Center)
Cluster & TreeView (Eisen)
GeneSpring (Silicon Genetics)

Spotfire (Spotfire)

R Statistics Package/Bioconductor

Matlab (modules from Churchill, JAX)
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Lists of Tools

Rocketeller University (formerly)

— http://www.nslij-genetics.org/microarray/

R Statistics Package Microarry Tools

— http://www.stat.uni-muenchen.de/~strimmer/rexpress.html

Bioconductor Project

— http://www.bioconductor.org/

EBI

— http://ep.ebi.ac.uk/Links.html
— http://ep.ebi.ac.uk/EP/
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