

Bioinformatics for Biologists

Sequence Analysis: Part I. Pairwise alignment and database searching

Fran Lewitter, Ph.D. Head, Biocomputing Whitehead Institute

Bioinformatics Definitions

"The use of computational methods to make biological discoveries."

Fran Lewitter

"An interdisciplinary field involving biology, computer science, mathematics, and statistics to analyze biological sequence data, genome content, and arrangement, and to predict the function and structure of macromolecules."

David Mount

Topics to Cover

- Introduction
- Scoring alignments
- Alignment methods
- Significance of alignments
- Database searching methods

Topics to Cover

- Introduction
 - Why do alignments?
 - A bit of history
 - Definitions
- Scoring alignments
- Alignment methods
- Significance of alignments
- Database searching methods

Simian sarcoma virus onc gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor.

Doolittle RF, Hunkapiller MW, Hood LE, Devare SG, Robbins KC, Aaronson SA, Antoniades HN. *Science* 221:275-277, 1983.

Cancer Gene Found

Cell, Vol. 75, 1027-1038, December 3, 1993, Copyright © 1993 by Cell Press

The Human Mutator Gene Homolog *MSH2* and Its Association with Hereditary Nonpolyposis Colon Cancer

Richard Fishel,* Mary Kay Lescoe,* M. R. S. Rao,§ Neal G. Copeland,† Nancy A. Jenkins,† Judy Garber,‡ Michael Kane,§ and Richard Kolodner§ *Department of Microbiology and Molecular Genetics Markey Center for Molecular Genetics

can give rise to mismatched bases (Friedberg, 1985). For example, the deamination of 5-methylcytosine creates a thymine and, therefore, a G·T mispair (Duncan and Miller, 1980). Second, misincorporation of nucleotides during DNA replication can yield mismatched base pairs and nucleotide insertions and deletions (Modrich, 1991). Finally,

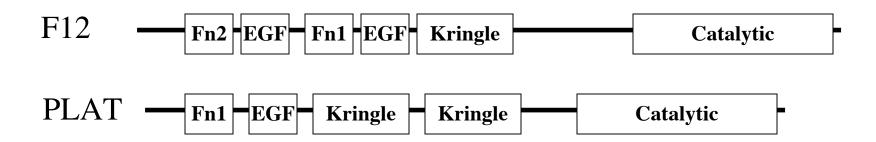
Homology to bacterial and yeast genes shed new light on human disease process

Evolutionary Basis of Sequence Alignment

- *Similarity* observable quantity, such as per cent identity
- *Homology* conclusion drawn from data that two genes share a common evolutionary history; no metric is associated with this

Some Definitions

- An *alignment* is a mutual arrangement of two sequences, which exhibits where the two sequences are similar, and where they differ.
- An *optimal alignment* is one that exhibits the most correspondences and the least differences. It is the alignment with the highest score. May or may not be biologically meaningful.


Alignment Methods

- *Global alignment* Needleman-Wunsch (1970) maximizes the number of matches between the sequences along the entire length of the sequences.
- Local alignment Smith-Waterman (1981) is a modification of the dynamic programming algorithm gives the highest scoring local match between two sequences.

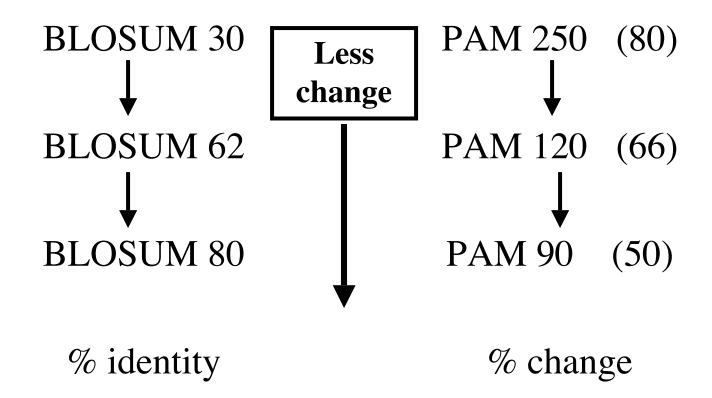
Alignment Methods

Global vs Local

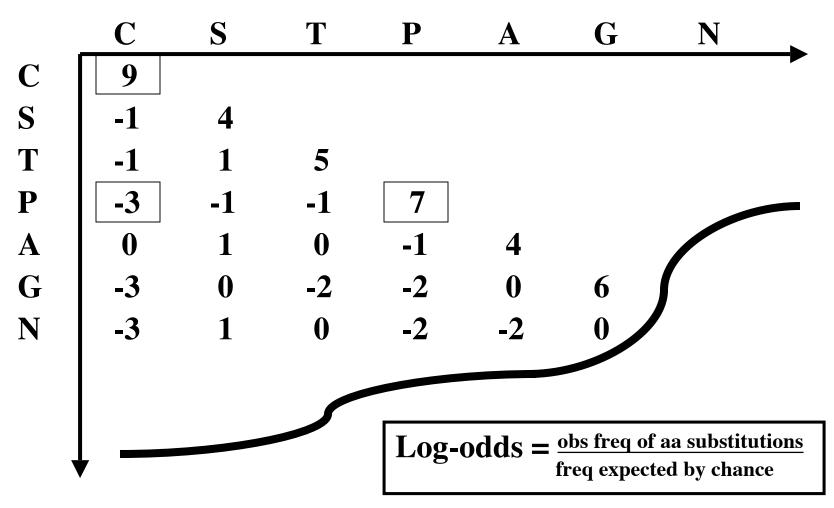
Modular proteins

Possible Alignments

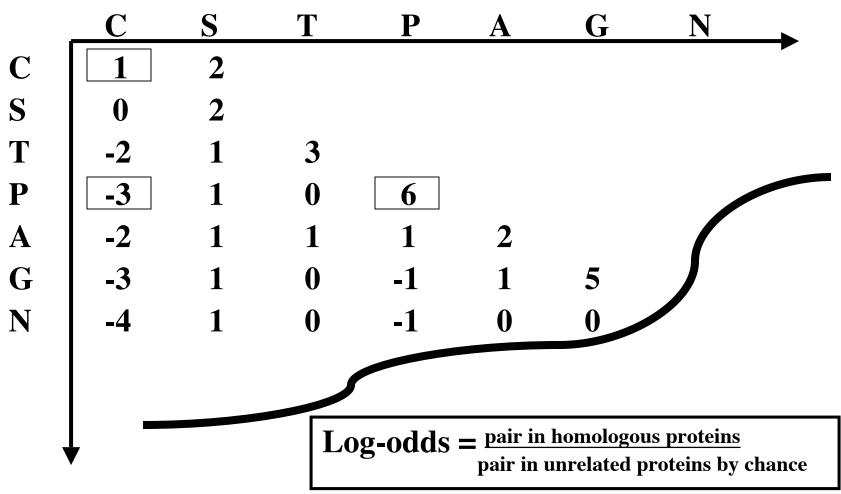
```
A: TCAGACGAGTG
```


Topics to Cover

- Introduction
- Scoring alignments
 - -Nucleotide vs Proteins
- Alignment methods
- Significance of alignments
- Database searching methods


Amino Acid Substitution Matrices

- *PAM* point accepted mutation based on *global* alignment [evolutionary model]
- **BLOSUM** block substitutions based on *local* alignments [similarity among conserved sequences]


Substitution Matrices

Part of BLOSUM 62 Matrix

Part of PAM 250 Matrix

Gap Penalties

- Insertion and Deletions (indels)
- Affine gap costs a scoring system for gaps within alignments that charges a penalty for the existence of a gap and an additional perresidue penalty proportional to the gap's length

Example of simple scoring system for nucleic acids

- Match = +1 (ex. A-A, T-T, C-C, G-G)
- Mismatch = -1 (ex. A-T, A-C, etc)
- Gap opening = 2
- Gap extension = -1

```
T C A G A C G A G T G

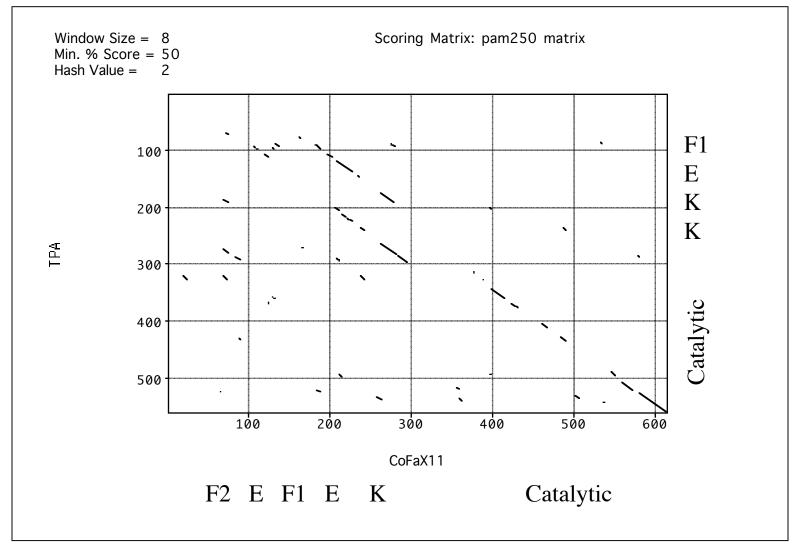
T C G G A - - G C T G

+1 +1 -1 +1 +1 -2 -1 -1 +1 +1 = 0
```

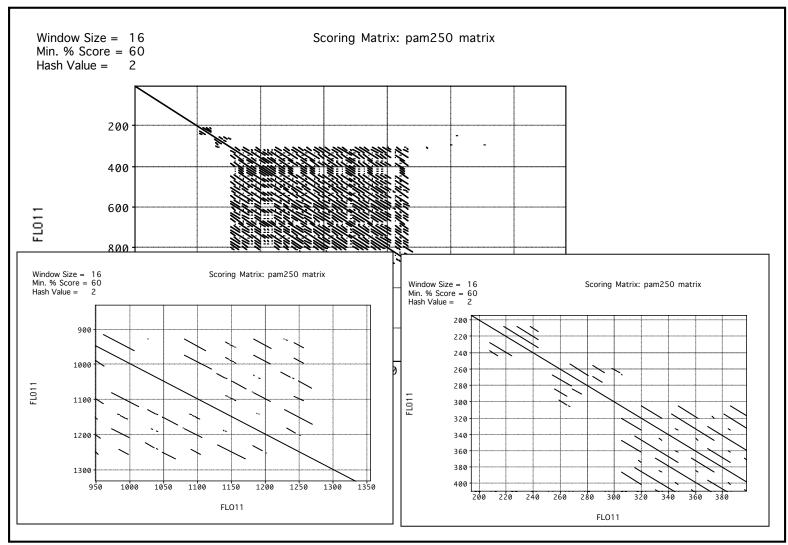
Scoring for BLAST 2 Sequences

Based on BLOSUM62

```
Position 1: Y - Y = 7
Position 2: T - S = 1
Position 3: G - S = 0
Position 4: P - E = -1


Position 9: - P = -11
Position 10: - A = -1

Sum 230
```


Topics to Cover

- Introduction
- Scoring alignments
- Alignment methods
 - Dot matrix analysis
 - Exhaustive methods; Dynamic programming algorithm (Smith-Waterman (Local), Needleman-Wunsch (Global))
 - Heuristic methods; Approximate methods; word or ktuple (FASTA, BLAST, BLAT)
- Significance of alignments
- Database searching methods

Dot Matrix Comparison

Dot Matrix Comparison

Dynamic Programming

- Provides very best or optimal alignment
- Compares every pair of characters (e.g. bases or amino acids) in the two sequences
- Puts in gaps and mismatches
- Maximum number of matches between identical or related characters
- Generates a score and statistical assessment
- Nice example of global alignment using N-W: http://www.sbc.su.se/~per/molbioinfo2001/dynprog/dynamic.html

Global vs Local Alignment

(example from Mount 2001)

	GAP	М	N	Α	L	s	D	R	Т
GAP	0	-12	-16	-20	-24	-28	-32	-36	-40
М	-12	6 (6)	-6	-10	-14	-18	-22	-26	-30
G	-16	-6 -6	© / 6	-5	-10	-13	-17	-22	-26
Ø	-20	-10	,5	7-	-5	-8 、	-13	-17	-21
۵	-24	-14	-8	-5 -5	3	-5	`-4 、	-14	-17
R	-28	-18	-14	-10	` ₋₈ 、	3	-6	`2 、	-10
Т	-32	-22	-18	-13	-12	-7	3	-7	``5 _¦
Т	-36	-26	-22	-17	-15	-11	-7	2	-4
Е	-40	-30	-25	-22	-20	-15	-8	-8	0
Т	-44	-34	-30	-24	-24	-21	-15	-9	-5

	GAP	М	N	Α	L	s	D	R	Т
GAP	0	0	0	0	0	0	0	0	0
М	0	6	0	0	4	0	0	0	0
G	0	0	6	1	0	5	1	0	0
S	0	0	1	7	0	2	5	1	1
D	0	0	2	1	3	0	6	4	1
R	0	0	0	0	0	3	0	12	3
Т	0	0	0	1	0	1	3	0	15
Т	0	0	0	1	0	1	1	2	3
Е	0	0	1	0	0	0	4	0	2
Т	0	0	0	2	0	1	0	3	3

```
      sequence 1
      M
      -
      N
      A
      L
      S
      D
      R
      T
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
      -
```

```
      sequence 1
      S D R T

      sequence 2
      S D R T

      score
      2 4 6 3 = 15
```

Original "Ungapped" BLAST Algorithm

- To improve speed, use a word based hashing scheme to index database
- Limit search for similarities to only the region near matching words
- Use Threshold parameter to rate neighbor words
- Extend match left and right to search for high scoring alignments

Original BLAST Algorithm (1990)

Query word (W=3)

Query: GSVEDTTGSQSLAALLNKCKTPQGQRLVNQWIKQPLM

Neighborhood words

PQG	18	PHG	13
PEG	15 _	PMG	13
PNG	13	PTG	12
PDG	13	Etc.	

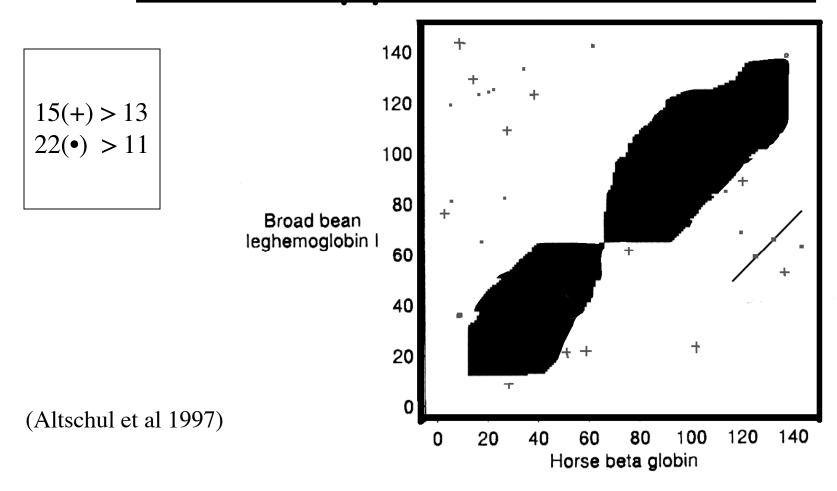
Neighborhood Score threshold (T=13)

Query: 325

 ${ t SLAALLNKCKT} { t PQG}_{ t QRLVNQWIKQPLMDKNRIEERLNLVEA}$

+LA++L+

G R++ +W+ P+ D


Sbjct: 290

TLASVLDCTVT**PMG**SRMLKRWLHMPVRDTRVLLERQQTIGA

BLAST Refinements (1997)

- "two-hit" method for extending word pairs
- Gapped alignments
- Iterate with position-specific matrix (PSI-BLAST)
- Pattern-hit initiated BLAST (PHI-BLAST)

Gapped BLAST

Gapped BLAST

(Altschul et al 1997)

Programs to Compare two sequences - Unix or Web

NCBI

BLAST 2 Sequences

EMBOSS

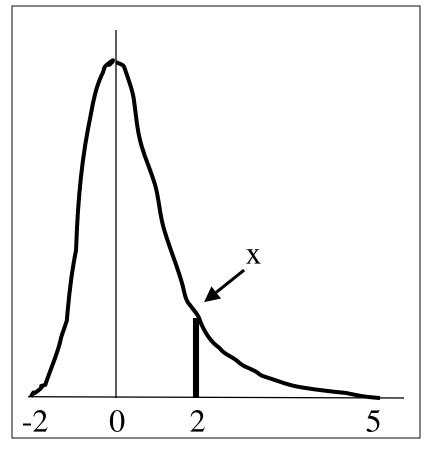
water - Smith-Waterman needle - Needleman -Wunsch dotmatch (dot plot) einverted or palindrome (inverted repeats) equicktandem or etandem (tandem repeats)

Other

lalign (multiple matching subsegments in two sequences)

Topics to Cover

- Introduction
- Scoring alignments
- Alignment methods
- Significance of alignments
- Database searching methods
- Demo


Significance of Alignment

How strong can an alignment be expected by chance alone?

- Real but non-homologous sequences
- Real sequences that are shuffled to preserve compositional properties
- Sequences that are generated randomly based upon a DNA or protein sequence model

Extreme Value Distribution

• When 2 sequences have been aligned optimally, the significance of a local alignment score can be tested on the basis of the distribution of scores expected by aligning two random sequences of the same length and composition as the two test sequences.

Statistical Significance

- <u>Raw Scores</u> score of an alignment equal to the sum of substitution and gap scores.
- <u>Bit scores</u> scaled version of an alignment's raw score that accounts for the statistical properties of the scoring system used.
- <u>E-value</u> expected number of distinct alignments that would achieve a given score by chance. Lower E-value => more significant.

Some formulas

 $\mathbf{E} = \mathrm{Kmn} \; \mathrm{e}^{-\square \mathrm{S}}$

This is the Expected number of high-scoring segment pairs (HSPs) with score at least S for sequences of length m and n.

This is the E value for the score S.

Topics to Cover

- Introduction
- Scoring alignments
- Alignment methods
- Significance of alignments
- Database searching methods
 - BLAST ungapped and gapped
 - BLAST vs. FASTA
 - BLAT

Questions

- Why do a database search?
- What database should be searched?
- What alignment algorithm to use?
- What do the results mean?

Issues affecting DB Search

- Substitution matrices
- Statistical significance
- Filtering
- Database choices

BLASTP Results

	Score	E	
Sequences producing significant alignments:	(bits)	Value	
gi 34862150 ref XP_345634.1 similar to mismatch repair pro	209	5e-54	L
gi 36949366 ref NP_002431.2 mutS homolog 4; mutS (E. coli)	162	9e-40	L
gi 34481396 emb CAC79990.1 sperm protein [Homo sapiens]	<u>152</u>	1e-36	L
gi 34861090 ref XP_227831.2 similar to MutS homolog 4 [Rat	147	3e-35	L
gi 34872785 ref XP_213395.2 similar to hypothetical protei	33	0.62	L
gi 34853116 ref XP_345138.1 similar to hypothetical protei	32	1.3	L
gi 34783109 gb AAH01726.2 Unknown (protein for IMAGE:35345	_32	1.6	
gi 16307283 gb AAH09731.1 AAH09731 Similar to hypothetical	31	3.1	L
gi 34868124 ref XP 221530.2 similar to mKIAA0719 protein[31	3.4	L
gi 34853816 ref XP_344817.1 similar to FGFR1 oncogene part	30	7.8	L

Alignments

Get selected sequences Select all Deselect all

```
Score = 209 bits (533), Expect = 5e-54
```

Identities = 174/617 (28%), Positives = 283/617 (45%), Gaps = 78/617 (12%)

Low Complexity Regions

- Local regions of biased composition
- Common in real sequences
- Generate false positives on BLAST search
- DUST for BLASTN (n's in sequence)
- SEG for other programs (x's in sequence)

Filtering is only applied to the query sequence (or its translation products), not to database sequences.

Filtered Sequence

>HUMAN MSH2

NEEYTKNKTEYEE

QGMPEKPTTTVRLFDRGDFYTAHGEDALLAAR VLSKMNFESFVKDLLLVRQYRVEVYKNRAGNK ILFGNNDMSASIGVVGVKMSAVDGQRQVGVGY ALLIQIGPKECVLPGGETAGDMGKLRQIIQRG

GILITERKRADFSTKDIYQDLNRLLKGKKGEQMNSAVLPEMENQVAVSSLSAVIK FLELLSDDSNFGQFELTTFDFSQYMKLD<u>IAAVRALNLFQGSVEDTTGSQSLAALL</u>

NKCKTPQGQRIVNQWIKQPLMDKNRIEE DLNRLAKKFQRQAANLQDCYRLYQGINQ TDLRSDFSKFQEMIETTLDMDQVENHEF LISAARDLGLDPGKQIKLDSSAQFGYYF

TALTTEETLT

FTNSKLTSLNEEYTKNKTEYEEAQDAIVKEIVNISSGYVEPMOTINDVLAQLDAV VSFAHVSNGAPVPYVRPAILEKGQGRIILKASRHACVEVQDEIAFIPNDVYFEKD KQMFHIITGPNMGGKSTYIRQTGVIVLMAQIGCFVPCESKEVSIVDCILARVGAG DSQLKGVSTFMAEMLETASILRSATKDSLIIIDELGRØSTYDGFGLAWAISEYI ATKIGAFCMFATHFHELTALANQIPTVNNLHVTALTTEETLTMLYQVKKGVCDQS FGIHVAELANFPKHVIECAKQKALELEEFQYIGESQGYDIMEPAAKKCYLEREQG EKIIQEFLSKVKQMPFTEMSEENITIKLKQLKAEVIAKNNSFVNEIISRIKVTT

Example Alignment w/o filtering

```
Score = 29.6 bits (65), Expect = 1.8
Identities = 22/70 (31%), Positives = 32/70 (45%), Gaps = 12/70 (17%)
```

```
Query: 31 PPPTTQGAPRTSSFTPTTLT-----NGTSHSPTALNGAPSPPNGFS 71
```

 $PPP+Q \quad R \quad S + T \quad T \qquad \qquad NG+S \quad S ++ + + S \quad + \quad S$

Sbjct: 1221 PPPSVQNQQRWGSSSVITTTCQQRQQSVSPHSNGSSSSSSSSSSSSSSSS 1273

Query: 72 NGPSSSSSSSLANQQLP 88

+ SSSS+SS Q P

Sbjct: 1274 SNCSSSSASSCQYFQSP 1290

Example BLAST w/ filtering

```
Score = 36.6 bits (83), Expect = 0.67
Identities = 21/58 (36%), Positives = 25/58 (42%), Gaps = 1/58 (1%)

Query: 471 AEDALAVINQQEDSSESCWNCGRKASETCSGCNTARYCGSFCQHKDWE-KHHHICGQT 527
A D V Q + + C CG A TCS C A YC Q DW+ H C Q+

Sbjct: 61 ASDTECVCLQLKSGAHLCRVCGCLAPMTCSRCKQAHYCSKEHQTLDWQLGHKQACTQS 118
```

```
Score = 37.0 bits (84), Expect = 0.55
Identities = 18/55 (32%), Positives = 22/55 (39%)
```

Query: 483 DSSESCWNCGRKASETCSGCNTARYCGSFCQHKDWEKHHHICGQTLQAQQQGDTP 537

D C CG A++ C+ C ARYC Q DW H C + D P

Sbjct: 75 DGPGLCRICGCSAAKKCAKCQVARYCSQAHQVIDWPAHKLECAKAATDGSITDEP 129

WU-BLAST vs NCBI BLAST

- WU-BLAST first for gapped alignments
- Use different scoring system for gaps
- Report different statistics
- WU-BLAST does not filter low-complexity by default
- WU-BLAST looks for and reports multiple regions of similarity
- Results will be different

BLAT

- **B**last-**L**ike **A**lignment **T**ool
- Developed by Jim Kent at UCSC
- For DNA it is designed to quickly find sequences of >= 95% similarity of length 40 bases or more.
- For proteins it finds sequences of >= 80% similarity of length 20 amino acids or more.
- DNA BLAT works by keeping an index of the entire genome in memory non-overlapping 11-mers (< 1 GB of RAM)
- Protein BLAT uses 4-mers (~ 2 GB)

FASTA

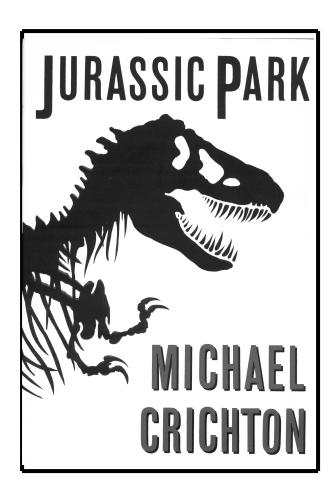
- Index "words" and locate identities
- Rescore best 10 regions
- Find optimal subset of initial regions that can be joined to form single alignment
- Align highest scoring sequences using Smith-Waterman

NCBI Programs for nt vs nt

- Discontiguous megablast
- Megablast
- Nucleotide-nucleotide BLAST (blastn)
- Search for short, nearly exact matches

NCBI Programs for proteins

- Protein-protein BLAST (blastp)
- PHI- and PSI-BLAST
- Search for short, nearly exact matches
- Search the conserved domain database (rpsblast)
- Search by domain architecture (cdart)


NCBI Programs w/ translations

- Translated query vs. protein database (blastx)
- Protein query vs. translated database (tblastn)
- Translated query vs. translated database (tblastx)

Basic Searching Strategies

- Search early and often
- Use specialized databases
- Use multiple matrices
- Use filters
- Consider Biology

Sequence of Note

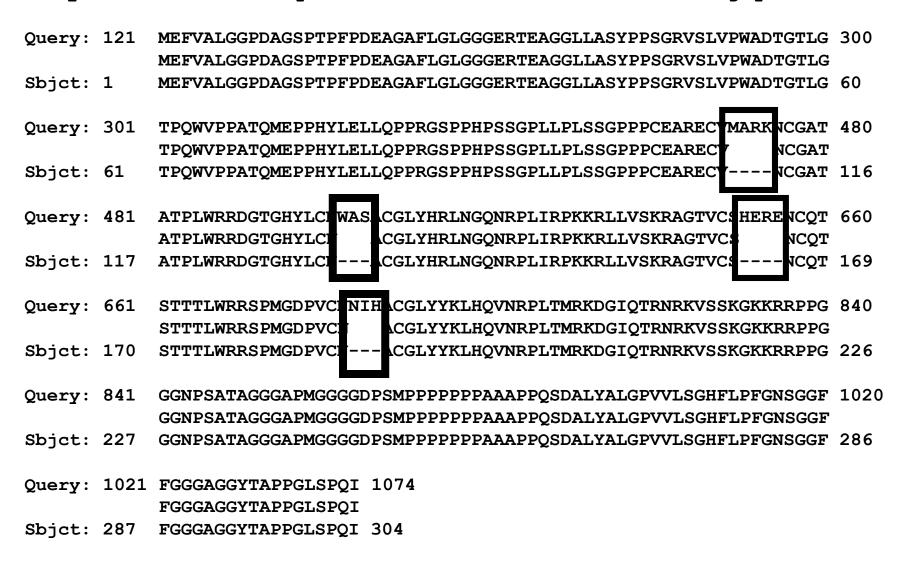
1 GCGTTGCTGG CGTTTTTCCA TAGGCTCCGC

31 CCCCCTGACG AGCATCACAA AAATCGACGC

61 GGTGGCGAAA CCCGACAGGA CTATAAAGAT

1371 GTAAAGTCTG GAAACGCGGA AGTCAGCGCC

"Here you see the actual structure of a small fragment of dinosaur DNA," Wu said. "Notice the sequence is made up of four compounds - adenine, guanine, thymine and cytosine. This amount of DNA probably contains instructions to make a single protein - say, a hormone or an enzyme. The full DNA molecule contains *three billion* of these bases. If we looked at a screen like this once a second, for eight hours a day, it'd still take more than two years to look at the entire DNA strand. It's that big." (page 103)


DinoDNA "Dinosaur DNA" from Crichton's THE LOST WORLD p. 135

GAATTCCGGAAGCGAGCAAGAGATAAGTCCTGGCATCAGA TACAGTTGGAGATAAGGACGACGTGTGGCAGCTCCCGCAG AGGATTCACTGGAAGTGCATTACCTATCCCATGGGAGCCA TGGAGTTCGTGGCGCTGGGGGGGCCCGGATGCGGCCTCCCC CACTCCGTTCCCTGATGAAGCCGGAGCCTTCCTGGGGCTG GGGGGGGGCGAGAGGACGGAGGCGGGGGGGCTGCTGGCCT CCTACCCCCCTCAGGCCGCGTGTCCCTGGTGCCGTGGCA GACACGGGTACTTTGGGGACCCCCCAGTGGGTGCCGCCCG CCACCCAAATGGAGCCCCCCCCACTACCTGGAGCTGCTGCA ACCCCCCGGGGCAGCCCCCCCATCCCTCCTCCGGGCCC CTACTGCCACTCAGCAGCGCCTGCGGCCTCTACTACAAAC

>Erythroid transcription factor (NF-E1 DNA-binding protein)

Query:	121	MEFVALGGPDAGSPTPFPDEAGAFLGLGGGERTEAGGLLASYPPSGRVSLVPWADTGTLG	300
		MEFVALGGPDAGSPTPFPDEAGAFLGLGGGERTEAGGLLASYPPSGRVSLVPWADTGTLG	
Sbjct:	1	MEFVALGGPDAGSPTPFPDEAGAFLGLGGGERTEAGGLLASYPPSGRVSLVPWADTGTLG	60
Query:	301	TPQWVPPATQMEPPHYLELLQPPRGSPPHPSSGPLLPLSSGPPPCEARECVMARKNCGAT	480
		TPQWVPPATQMEPPHYLELLQPPRGSPPHPSSGPLLPLSSGPPPCEARECV NCGAT	
Sbjct:	61	TPQWVPPATQMEPPHYLELLQPPRGSPPHPSSGPLLPLSSGPPPCEARECVNCGAT	116
Query:	481	ATPLWRRDGTGHYLCNWASACGLYHRLNGQNRPLIRPKKRLLVSKRAGTVCSHERENCQT	660
		ATPLWRRDGTGHYLCN ACGLYHRLNGQNRPLIRPKKRLLVSKRAGTVCS NCQT	
Sbjct:	117	ATPLWRRDGTGHYLCNACGLYHRLNGQNRPLIRPKKRLLVSKRAGTVCSNCQT	169
Query:	661	STTTLWRRSPMGDPVCNNIHACGLYYKLHQVNRPLTMRKDGIQTRNRKVSSKGKKRRPPG	840
		STTTLWRRSPMGDPVCN ACGLYYKLHQVNRPLTMRKDGIQTRNRKVSSKGKKRRPPG	
Sbjct:	170	STTTLWRRSPMGDPVCNACGLYYKLHQVNRPLTMRKDGIQTRNRKVSSKGKKRRPPG	226
Query:	841	GGNPSATAGGGAPMGGGGDPSMPPPPPPPAAAPPQSDALYALGPVVLSGHFLPFGNSGGF	1020
		GGNPSATAGGGAPMGGGGDPSMPPPPPPPAAAPPQSDALYALGPVVLSGHFLPFGNSGGF	
Sbjct:	227	GGNPSATAGGGAPMGGGGDPSMPPPPPPPAAAPPQSDALYALGPVVLSGHFLPFGNSGGF	286
Query:	1021	FGGGAGGYTAPPGLSPQI 1074	
		FGGGAGGYTAPPGLSPQI	
Sbict:	287	FGGGAGGYTAPPGLSPOI 304	

>Erythroid transcription factor (NF-E1 DNA-binding protein)

Useful Web Links

http://www.ncbi.nlm.nih.gov/blast

http://www.ebi.ac.uk/blast2/

http://www2.ebi.ac.uk/fasta33/

http://www2.ebi.ac.uk/bic_sw/

http://genome-test.cse.ucsc.edu/cgi-bin/hgBlat