

Sequence Analysis

Genomics and Genome Browsers

III:

George Bell, Ph.D. WIBR Bioinformatics and Research Computing

Genomics and Genome Browsers

- Introduction to genomics
- Genomics with genome browsers
- Conservation and evolution
- Introduction to comparative genomics
- Genome-wide data analysis

Genomics: some big questions

- What is a gene?
 - one definition: a region of DNA that encodes functional RNA or protein.
- What is the sequence of the genome? SNPs?
- Where are all of the genes?
- What are the proteins they encode? What do they do?
- Where's the regulatory sequence? What does it do?
- How can one integrate all of this information?

The human genome

The human genome

- Last assembly: July 2003
 - 3.2 billion bases, mostly complete
 Ensembl annotation: 23,531 genes; 31,609 transcripts
 Heterochromatin (light staining) is not sequenced
 Mean GC content: 41%
 Repetitive DNA: 50%
 Coding sequence: 1.5%
 Under selection: 5%
- Reference genome sequence comprises one strand of each chromosome.

Identifying genes

- Optimal protocol: Collect all RNA from all cell types in all conditions, sequence it and map it to the genome.
- Practical protocols:
 - predict genes de novo
 - cluster ESTs
 - sequence full-length clones
 - search with known genes in another species
 - a combination of those techniques above
- Still problems with pseudogenes

How many genes and transcripts?

- Gene-centric databases (one entry per gene)
 - Ensembl (Hs=23,531; Mm=26,762)
 - LocusLink (37,497; 69,612) incl. other "stuff"
- Human-curated full-length cDNA resources (one entry per transcript)
 - RefSeq (21,150; 17,017)
 - Mammalian Gene Collection (11,196; 10,216)
- EST-centric clusters (one entry per cluster)
 - UniGene (118,517; 82,482)
 - TIGR Gene Indices (201,258; 145,559)

Genome Browsers

Examples: UCSC, Ensembl, NCBI, WIBR

Genome Browser tracks

Mapping and Sequencing Tracks			
Base Position Band on • dense •	STS Markers hide	FISH Clones	Recomb Rate
Map ContigsAssemblyhide•Fosmid End PairsGC Percent	<u>Gap</u> hide ⊡	Coverage hide	BAC End Pairs hide
hide 🖸 hide 🖸			E. Burger de C
Gei	nes and Gene Predic	ction Tracks	
Known Genes RefSeq Genes	MGC Genes	Vega Genes	Vega Pseudogenes
pack · pack ·	pack -	hide 🔄	hide -
Ensembl Genes ECgene Genes	Twinscan	SGP Genes	<u>Fgenesh++ Genes</u>
squish 🖸 🔰 hide 🗉	hide 🖸	hide 🖸	hide ·
Geneid Genes Genscan Genes	Tennis Millionale	Tennes Clench	Tennes Country 6
hide · pack ·	C. S. States		
mRNA and EST Tracks			
Human mRNAs Spliced ESTs pack dense	Human ESTs hide	<u>NonHuman</u> <u>mRNAs</u> hide	NonHuman ESTs hide
TIGR Gene Index UniGene hide	Gene Bounds hide	Alt-Splicing hide	
Expression and Regulation			
CpG Islands FirstEF	NCI60	GNF Ratio	Affymetrix U133
Turge T	Lunge .	dense -	Luide .

Genome Browser data

- Potential to show any data that can be mapped to a genome.
- Visual examination can be more powerful than any automated analysis tool.
- Positive strand of reference chromosome is shown.
- Conventions: gene "start" < "end"
- Coordinates change with each assembly.
- Sequence is often soft- or hard-masked for repetitive DNA.

Conservation and evolution

- Functional regions of a genome can be difficult to find in a large, repetitive sequence.
- During evolution, pressure for selection leads to greater conservation of some regions of a genome.
- Searching for regions of purifying selection is hoped to lead to elements of functional significance.

Homology

- Genes are *homologous* if they arose from the same ancestor.
- Orthologs: homologs (in different species)
 that arose from a speciation event
- Paralogs: homologs (in the same species)
 that arose from a duplication event

Quantifying evolution of coding regions

1. Percentage of AA identity or similarity

For human-mouse orthologs, median identity = 79%

2. The K_a/K_s ratio

AA substitution rateNon-synonymous substitution rateNeutral substitution rateSynonymous substitution rate

For human-mouse orthologs, median $K_a/K_s = 0.12$

=> 88% of AA-changing mutations are deleterious

- Domain-containing regions have evolved less.
- Pseudogenes have a K_a/K_s ratio close to 1.

Comparative genomics

- Conservation between genomes is a very effective way to identify genes and regulatory regions.
- Comparison of multiple genomes can identify functional elements without any previous understanding of their function.
- With increasing conservation of a region of interest, comparisons between more distant species becomes more informative.
- Comparison of two species is rarely as effective as that of multiple species.

Multiple-species comparisons

Vertebrate sequencing projects

Conserved synteny

Figure 3 Segments and blocks >300 kb in size with conserved synteny in human are superimposed on the mouse genome. Each colour corresponds to a particular human chromosome. The 342 segments are separated from each other by thin, white lines within the 217 blocks of consistent colour.

Finding orthologous genes

- Traditional method 1: reciprocal best BLASTP hits in all vs. all searches
- Traditional method 2: synteny maps
- Current methods: sequence analysis and conserved synteny
- Resources:

Ensembl, NCBI, genome browsers

• Complicated by paralogous genes

What do all the genes do?

Q: How can every molecular function and biological process be systematically organized?

A: The Gene Ontology Consortium

- The three GO ontologies:
 - Molecular function
 - Biological Process
 - Cellular Component

Gene_Ontology [GO:0003673]		
molecular_function [GO:0003674]		
binding [<u>GO:0005488</u>]		
nucleic acid binding [<u>GO:0003676</u>]		
DNA binding [<u>GO:0003677</u>]		
transcription factor activity [<u>GO:0003700</u>]		
RNA polymerase II transcription factor activity, enhancer binding [GO:0003705]		
transcription regulator activity [<u>GO:0030528</u>]		
RNA polymerase II transcription factor activity [<u>GO:0003702</u>]		
RNA polymerase II transcription factor activity, enhancer binding [GO:0003705]		
transcription factor activity [GO:0003700]		
RNA polymerase II transcription factor activity, enhancer binding [GO:0003705]		

- Components of the ontologies are like hierarchies except that a "child" can have more than one "parent".
- Evidence for annotation varies.

Genome-wide data analysis

- Ensembl and UCSC genome downloads
- NCBI flat file downloads
- EnsMart for genome-wide queries on the web
- Ensembl and WIBR LocusLink for SQL queries
- Analyzing sequence vs. annotations
- Transitivity of sequences and annotations?
- Check with BaRC about data on their servers

Summary

- Introduction to genomics
- Genomics with genome browsers
- Conservation and evolution
- Introduction to comparative genomics
- Genome-wide data analysis

Selected references

- Initial sequencing and analysis of the human genome. Nature. 409:860-921, 2001.
- Initial sequencing and comparative analysis of the mouse genome. Nature. 420:520-62, 2002.
- A User's Guide to the Human Genome II. Nature Genetics. 35 Suppl 1:4, 2003. ("web special")

Exercises

- Browsing for genomic information
- Extracting annotated genomic sequence
- Gene-finding with comparative mammalian genomics
- Gene and genome analysis through annotation
- Command-line applications