

Bioinformatics for Biologists

Sequence Analysis: Part I. Pairwise alignment and database searching

Fran Lewitter, Ph.D.
Director
Bionformatics & Research Computing
Whitehead Institute

Topics to Cover

- Introduction
- Scoring alignments
- Alignment methods
- Significance of alignments
- Database searching methods

Topics to Cover

- Introduction
 - Why do alignments?
 - A bit of history
 - Definitions
- Scoring alignments
- Alignment methods
- Significance of alignments
- Database searching methods

Simian sarcoma virus onc gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor.

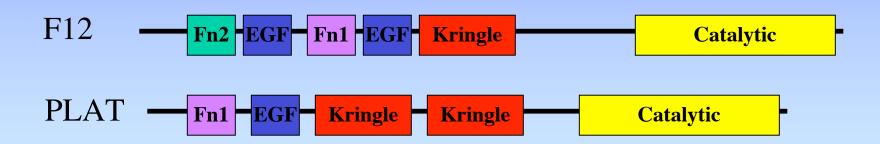
Doolittle RF, Hunkapiller MW, Hood LE, Devare SG, Robbins KC, Aaronson SA, Antoniades HN. *Science* 221:275-277, 1983.

Evolutionary Basis of Sequence Alignment

- Similarity observable quantity, such as per cent identity
- *Homology* conclusion drawn from data that two genes share a common evolutionary history; no metric is associated with this

Some Definitions

- An *alignment* is a mutual arrangement of two sequences, which exhibits where the two sequences are similar, and where they differ.
- An *optimal alignment* is one that exhibits the most correspondences and the least differences. It is the alignment with the highest score. May or may not be biologically meaningful.


Alignment Methods

- Global alignment Needleman-Wunsch (1970) maximizes the number of matches between the sequences along the entire length of the sequences.
- Local alignment Smith-Waterman (1981) is a modification of the dynamic programming algorithm gives the highest scoring local match between two sequences.

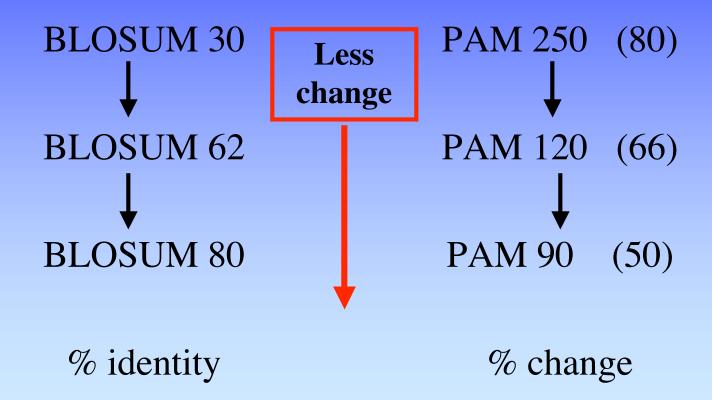
Alignment Methods

Global vs Local

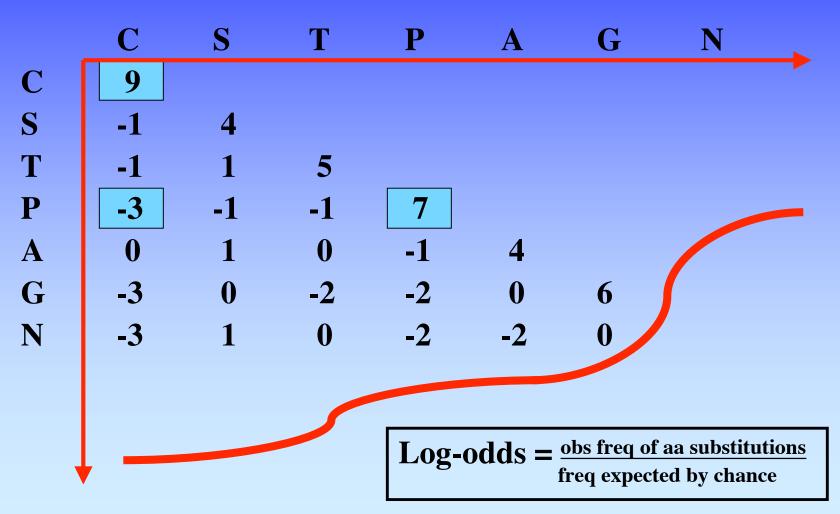
Modular proteins

Possible Alignments

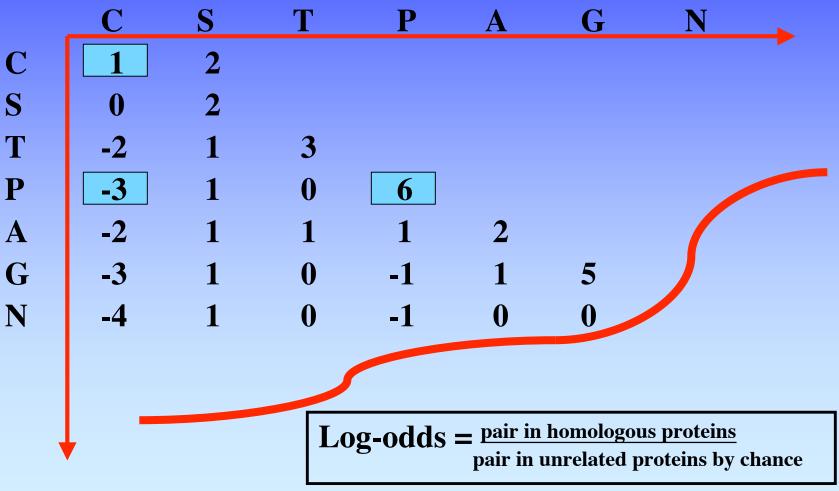
```
A: T C A G A C G A G T G
```


Topics to Cover

- Introduction
- Scoring alignments
 - Nucleotide vs Proteins
 - Definitions
- Alignment methods
- Significance of alignments
- Database searching methods


Amino Acid Substitution Matrices

- *PAM* point accepted mutation based on *global* alignment [evolutionary model]
- **BLOSUM** block substitutions based on *local* alignments [similarity among conserved sequences]


Substitution Matrices

Part of BLOSUM 62 Matrix

Part of PAM 250 Matrix

Gap Penalties

- Insertion and Deletions (indels)
- Affine gap costs a scoring system for gaps within alignments that charges a penalty for the existence of a gap and an additional perresidue penalty proportional to the gap's length

Example of simple scoring system for nucleic acids

- Match = +1 (ex. A-A, T-T, C-C, G-G)
- Mismatch = -1 (ex. A-T, A-C, etc)
- Gap opening = 5
- Gap extension = -2

```
T C A G A C G A G T G

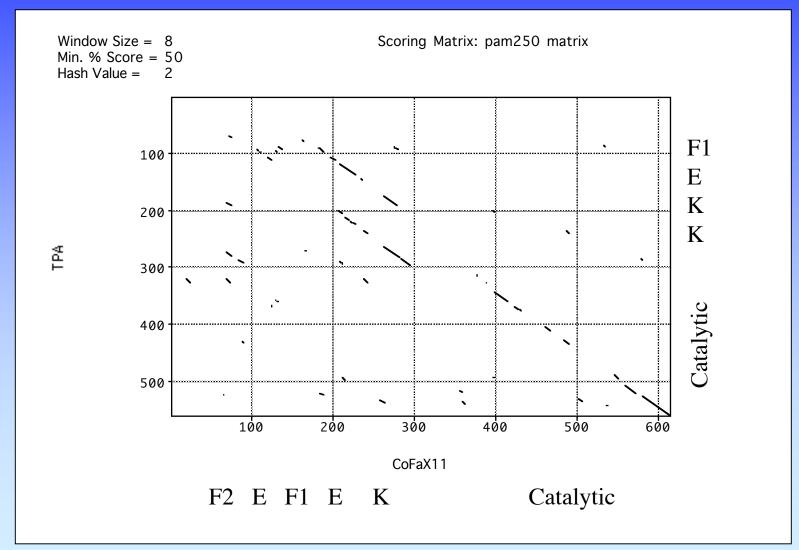
T C G G A - G C T G

+1 +1 -1 +1 +1 -5 -2 -1 -1 +1 +1 = -4
```

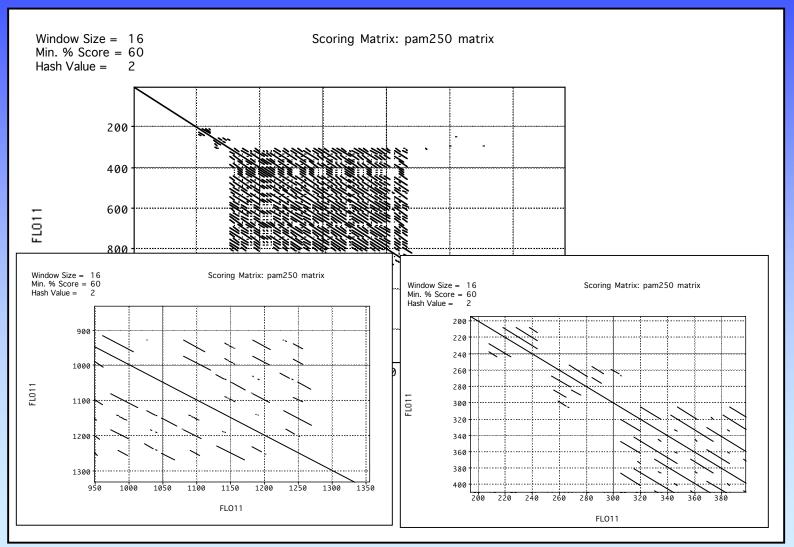
Scoring for BLAST 2 Sequences

Based on BLOSUM62

```
Position 1: Y - Y = 7
Position 2: T - S = 1
Position 3: G - S = 0
Position 4: P - E = -1


Position 9: - - P = -11
Position 10: - - A = -1

Sum 230
```


Topics to Cover

- Introduction
- Scoring alignments
- Alignment methods
 - Dot matrix analysis
 - Exhaustive methods; Dynamic programming algorithm (Smith-Waterman (Local), Needleman-Wunsch (Global))
 - Heuristic methods; Approximate methods; word or ktuple (FASTA, BLAST, BLAT)
- Significance of alignments
- Database searching methods

Dot Matrix Comparison

Dot Matrix Comparison

Dynamic Programming

- Provides very best or optimal alignment
- Compares every pair of characters (e.g. bases or amino acids) in the two sequences
- Puts in gaps and mismatches
- Maximum number of matches between identical or related characters
- Generates a score and statistical assessment
- Nice example of global alignment using N-W: http://www.sbc.su.se/~per/molbioinfo2001/dynprog/dynamic.html

Global vs Local Alignment

(example from Mount 2001)

	GAP	М	N	Α	L	s	D	R	Т
GAP	0	-12	-16	-20	-24	-28	-32	-36	-40
М	-12	6 (6)	-6	-10	-14	-18	-22	-26	-30
G	-16	-6	6(0)	-5	-10	-13	-17	-22	-26
Ø	-20	-10	-5	7	-5	, 8 '	-13	-17	-21
۵	-24	-14	-8	-5	3	5	, 4 ,	-14	-17
R	-28	-18	-14	-10	`-8 <u>`</u>	3	-6	`2 、	-10
۲	-32	-22	-18	-13	-12	-7	3	-7	` ⁵ ¦
۲	-36	-26	-22	-17	-15	-11	`-7、	2	-4
Е	-40	-30	-25	-22	-20	-15	-8	-8	0
۲	-44	-34	-30	-24	-24	-21	-15	-9	-5

	GAP	М	N	Α	L	s	D	R	Т
GAP	0	0	0	0	0	0	0	0	0
М	0	6	0	0	4	0	0	0	0
G	0	0	6	1	0	5	1	0	0
S	0	0	1	7	0	2 、	5	1	1
D	0	0	2	1	3	0	6	4	1
R	0	0	0	0	0	3	0	12	3
Т	0	0	0	1	0	1	3	0	15
Т	0	0	0	1	0	1	1	2	3
Е	0	0	1	0	0	0	4	0	2
Т	0	0	0	2	0	1	0	3	3

```
      sequence 1
      M
      -
      N
      A
      L
      S
      D
      R
      T

      sequence 2
      M
      G
      S
      D
      R
      T
      T
      E
      T

      score
      6
      -12
      1
      0
      -3
      1
      0
      -1
      3
      =
      -5
```

```
      sequence 1
      S D R T

      sequence 2
      S D R T

      score
      2 4 6 3 = 15
```

Original "Ungapped" BLAST Algorithm (1990)

- To improve speed, use a word based hashing scheme to index database
- Limit search for similarities to only the region near matching words
- Use Threshold parameter to rate neighbor words
- Extend match left and right to search for high scoring alignments

Original BLAST Algorithm (1990)

Query word (W=3)

Query: GSVEDTTGSQSLAALLNKCKTPQGQRLVNQWIKQPLM

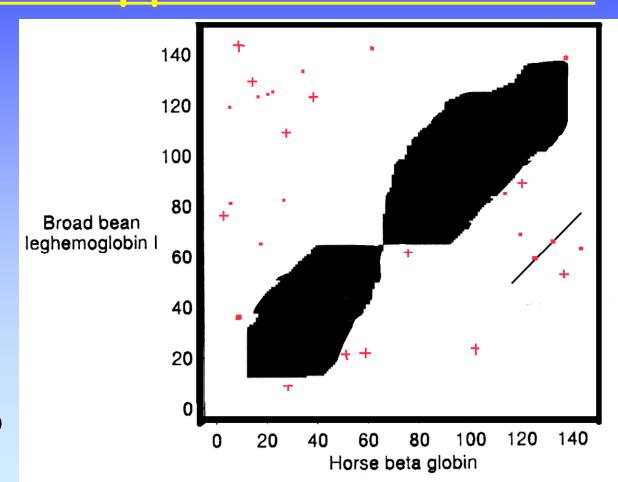
Neighborhood words

PQG	18	PHG	13
PEG	15 _	PMG	13
PNG	13	PTG	12
PDG	13	Etc.	

Neighborhood Score threshold (T=13)

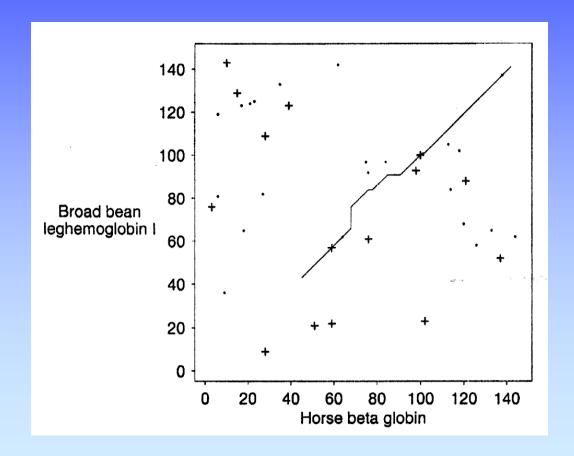
Query: 325 SLAALLNKCKT PQGQRLVNQWIKQPLMDKNRIEERLNLVEA

+LA++L+ TP G R++ +W+ P+ D + ER I A


Sbjct: 290 TLASVLDCTVT PMGSRMLKRWLHMPVRDTRVLLERQQTIGA

BLAST Refinements (1997)

- "two-hit" method for extending word pairs
- Gapped alignments
- Additional algorithms
 - Iterate with position-specific matrix (PSI-BLAST)
 - Pattern-hit initiated BLAST (PHI-BLAST)


Gapped BLAST

15(+) > 13 $22(\bullet) > 11$

(Altschul et al 1997)

Gapped BLAST

(Altschul et al 1997)

Programs to Compare two sequences - Unix or Web

NCBI

BLAST 2 Sequences

EMBOSS

water - Smith-Waterman needle - Needleman -Wunsch dotmatch (dot plot) einverted or palindrome (inverted repeats) equicktandem or etandem (tandem repeats)

Other

lalign (multiple matching subsegments in two sequences)

Topics to Cover

- Introduction
- Scoring alignments
- Alignment methods
- Significance of alignments
 - How strong can alignment be by chance alone?
- Database searching methods

Statistical Significance

- <u>Raw Scores</u> score of an alignment equal to the sum of substitution and gap scores.
- <u>Bit scores</u> scaled version of an alignment's raw score that accounts for the statistical properties of the scoring system used.
- <u>E-value</u> expected number of distinct alignments that would achieve a given score by chance. Lower E-value => more significant.

Some formulas

 $E = Kmn e^{-\lambda S}$

This is the Expected number of high-scoring segment pairs (HSPs) with score at least S for sequences of length m and n.

This is the E value for the score S.

Topics to Cover

- Introduction
- Scoring alignments
- Alignment methods
- Significance of alignments
- Database searching methods
 - BLAST
 - BLAST vs. FASTA
 - BLAT

Questions

- Why do a database search?
- What database should be searched?
- What alignment algorithm to use?
- What do the results mean?
- What parameters can be changed?
 - Substitution matrices
 - Statistical significance
 - Filtering for low complexity

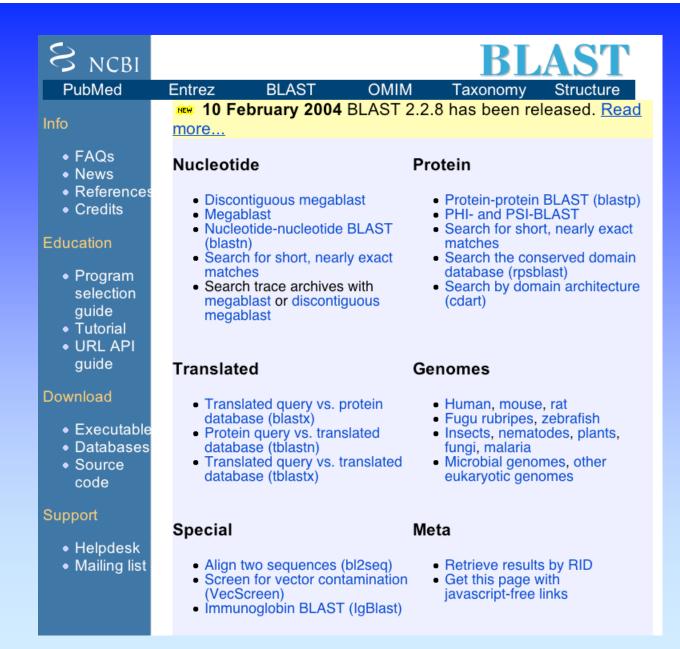
BLASTP Results

```
Score
                                                                       \mathbf{E}
Sequences producing significant alignments:
                                                              (bits) Value
                                                                     5e-54 L
gi|34862150|ref|XP 345634.1|
                            similar to mismatch repair pro...
                                                               209
                                                                    9e-40 L
                            mutS homolog 4; mutS (E. coli)...
                                                              162
gi|36949366|ref|NP 002431.2|
                                                              152 1e−36 L
qi|34481396|emb|CAC79990.1| sperm protein [Homo sapiens]
                                                               147
                                                                   3e-35 L
                            similar to MutS homolog 4 [ Rat...
gi|34861090|ref|XP 227831.2|
                                                               33
gi|34872785|ref|XP 213395.2|
                            similar to hypothetical protei ...
                                                                   0.62
                            similar to hypothetical protei...
                                                               32
gi|34853116|ref|XP 345138.1|
                                                                    1.3
                                                               32
gi|34783109|gb|AAH01726.2| Unknown (protein for IMAGE:35345...
                                                                    1.6
                                                               31
                                                                   3.1
gi|16307283|gb|AAH09731.1|AAH09731 Similar to hypothetical ...
                                                               31 3.4
gi|34868124|ref|XP 221530.2|
                            similar to mKIAA0719 protein [ ...
                            similar to FGFR1 oncogene part...
                                                              30
                                                                    7.8
                                                                          L
gi|34853816|ref|XP 344817.1|
```

Alignments

```
Get selected sequences | Select all | Deselect all
```

WU-BLAST VS NCBI BLAST


- WU-BLAST first for gapped alignments
- Use different scoring system for gaps
- Report different statistics
- WU-BLAST does not filter low-complexity by default
- WU-BLAST looks for and reports multiple regions of similarity
- Results will be different!

BLAT

- Blast-Like Alignment Tool
- Developed by Jim Kent at UCSC
- For DNA it is designed to quickly find sequences of >= 95% similarity of length 40 bases or more.
- For proteins it finds sequences of >= 80% similarity of length 20 amino acids or more.
- DNA BLAT works by keeping an index of the entire genome in memory non-overlapping 11-mers (< 1 GB of RAM)
- Protein BLAT uses 4-mers (~ 2 GB)

FASTA

- Index "words" and locate identities
- Rescore best 10 regions
- Find optimal subset of initial regions that can be joined to form single alignment
- Align highest scoring sequences using Smith-Waterman

Basic Searching Strategies

- Search early and often
- Use specialized databases
- Use multiple matrices
- Use filters
- Consider Biology