

Bioinformatics for Biologists

Sequence Analysis: Part I. Pairwise alignment and database searching

Fran Lewitter, Ph.D. Director Bionformatics & Research Computing Whitehead Institute

Topics to Cover

- Introduction
- Scoring alignments
- Alignment methods
- Significance of alignments
- Database searching methods

WIBR Sequence Analysis Course, © Whitehead Institute, February 2004

2

Topics to Cover

- Introduction
 - Why do alignments?
 - A bit of history
 - Definitions
- Scoring alignments
- Alignment methods
- Significance of alignments
- Database searching methods

WIBR Sequence Analysis Course, © Whitehead Institute, February 2004

Simian sarcoma virus onc gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor.

Doolittle RF, Hunkapiller MW, Hood LE, Devare SG, Robbins KC, Aaronson SA, Antoniades HN. *Science* 221:275-277, 1983.

WIBR Sequence Analysis Course, ${\small \circledcirc}$ Whitehead Institute, February 2004

4

Evolutionary Basis of Sequence Alignment

- *Similarity* observable quantity, such as per cent identity
- *Homology* conclusion drawn from data that two genes share a common evolutionary history; no metric is associated with this

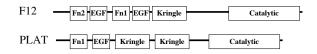
WIBR Sequence Analysis Course, © Whitehead Institute, February 2004

Some Definitions

- An *alignment* is a mutual arrangement of two sequences, which exhibits where the two sequences are similar, and where they differ.
- An *optimal alignment* is one that exhibits the most correspondences and the least differences. It is the alignment with the highest score. May or may not be biologically meaningful.

WIBR Sequence Analysis Course, © Whitehead Institute, February 2004

Alignment Methods


- *Global alignment* Needleman-Wunsch (1970) maximizes the number of matches between the sequences along the entire length of the sequences.
- *Local alignment* Smith-Waterman (1981) is a modification of the dynamic programming algorithm gives the highest scoring local match between two sequences.

WIBR Sequence Analysis Course, © Whitehead Institute, February 2004

Alignment Methods

Global vs Local

Modular proteins

WIBR Sequence Analysis Course, © Whitehead Institute, February 2004

8

Possible Alignments

A: T C A G A C G A G T G
B: T C A G A C G A G T G

I. T C A G A C G A G T G

II. T C A G A C G A G T G

II. T C A G A C G A G T G

III. T C A G A C G A G T G

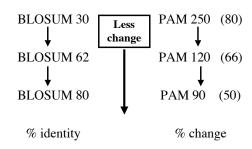
WIBR Sequence Analysis Course, ${\small \circledcirc}$ Whitehead Institute, February 2004

TCGGA-G-CTG

Topics to Cover

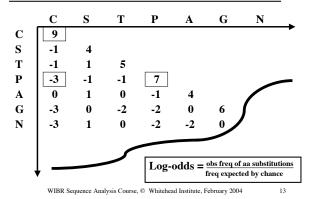
- Introduction
- Scoring alignments
 - Nucleotide vs Proteins
 - Definitions
- Alignment methods
- Significance of alignments
- Database searching methods

WIBR Sequence Analysis Course, © Whitehead Institute, February 2004

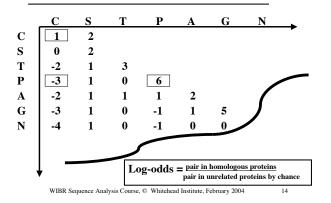

Amino Acid Substitution Matrices

- *PAM* point accepted mutation based on *global* alignment [evolutionary model]
- BLOSUM block substitutions based on local alignments [similarity among conserved sequences]

WIBR Sequence Analysis Course, © Whitehead Institute, February 2004


11

Substitution Matrices



WIBR Sequence Analysis Course, © Whitehead Institute, February 2004

Part of BLOSUM 62 Matrix

Part of PAM 250 Matrix

Gap Penalties

- Insertion and Deletions (indels)
- Affine gap costs a scoring system for gaps within alignments that charges a penalty for the existence of a gap and an additional perresidue penalty proportional to the gap's length

WIBR Sequence Analysis Course, © Whitehead Institute, February 2004

15

17

Example of simple scoring system for nucleic acids

- Match = +1 (ex. A-A, T-T, C-C, G-G)
- Mismatch = -1 (ex. A-T, A-C, etc)
- Gap opening = 5
- Gap extension = -2

WIBR Sequence Analysis Course, ${\small \circledcirc}$ Whitehead Institute, February 2004

16

Scoring for BLAST 2 Sequences

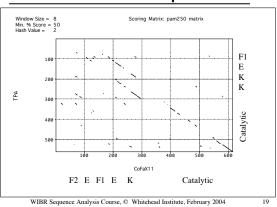
Score = 94.0 bits (230), Expect = 6e-19 Identities = 45/101 (44%), Positives = 54/101 (52%), Gaps = 7/101 (6%)

Query: 204 YTGPFCDV----DTKASCYDGRGLSYRGLARTTLSGAPCQPWASEATYRNVTAEQ---AR 256
Y+ FC + + CY G G +YRG T SGA C PW S V Q A+
Sbjct: 198 YSSEFCSTPACSEGNSDCYFGNGSAYRGTHSLTESGASCLPWNSMILIGKVYTAQNPSAQ 257

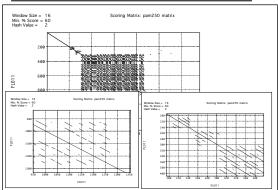
Query: 257 NWGLGGHAFCRNPDNDIRPWCFVLNRDRLSWEYCDLAQCQT 297
GLG H +CRNPD D +PWC VL RL+WEYCD+ C T
Sbjct: 258 ALGLGKHNYCRNPDGDAKPWCHVLKNRRLTWEYCDVPSCST 298

Based on BLOSUM62

Position 1: Y - Y = 7
Position 2: T - S = 1
Position 3: G - S = 0
Position 4: P - E = -1
...
Position 9: - - P = -11
Position 10: - - A = -1
...
Sum 230


WIBR Sequence Analysis Course. © Whitehead Institute. February 2004

Topics to Cover


- Introduction
- Scoring alignments
- Alignment methods
 - Dot matrix analysis
 - Exhaustive methods; Dynamic programming algorithm (Smith-Waterman (Local), Needleman-Wunsch (Global))
 - Heuristic methods; Approximate methods; word or ktuple (FASTA, BLAST, BLAT)
- Significance of alignments
- Database searching methods

WIBR Sequence Analysis Course, © Whitehead Institute, February 2004

Dot Matrix Comparison

Dot Matrix Comparison

WIBR Sequence Analysis Course, © Whitehead Institute, February 2004

Dynamic Programming

- Provides very best or optimal alignment
- Compares every pair of characters (e.g. bases or amino acids) in the two sequences
- Puts in gaps and mismatches
- Maximum number of matches between identical or related characters
- · Generates a score and statistical assessment
- Nice example of global alignment using N-W: http://www.sbc.su.se/~per/molbioinfo2001/dynprog/dynamic.html

WIBR Sequence Analysis Course, © Whitehead Institute, February 2004

21

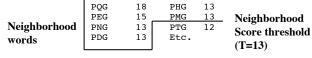
Global vs Local Alignment

(example from Mount 2001)

	GAP	М	N	Α	L	S	D	R	т			GAP	М	N	А	L	S	D	R	Т]
GAP	0	-12	-16	-20	-24	-28	-32	-36	-40		GAP	0	0	0	0	0	0	0	0	0]
М	-12	6 (6)	-6	-10	-14	-18	-22	-26	-30		М	0	6	0	0	4	0	0	0	0	1
G	-16	-6	6(0)	-5	-10	-13	-17	-22	-26		G	0	0	6	1	0	5	1	0	0]
s	-20	-10	-5	7	-5	-8 、	-13	-17	-21		s	0	0	1	7	0	2 ,	5	1	1	1
D	-24	-14	-8	-5	3	-5	`-4,	-14	-17		D	0	0	2	1	3	0	6	4	1	
R	-28	-18	-14	-10	-8	3	-6	`2,	-10		R	0	0	0	0	0	3	0	12	3	
т	-32	-22	-18	-13	-12	-7,	3	-7	5 :		Т	0	0	0	1	0	1	3	0	15	
т	-36	-26	-22	-17	-15	-11	-7	2	-4		Т	0	0	0	1	0	1	1	2	3	
Е	-40	-30	-25	-22	-20	-15	-8	-8	0		Е	0	0	1	0	0	0	4	0	2	
т	-44	-34	-30	-24	-24	-21	-15	-9	-5		Т	0	0	0	2	0	1	0	3	3	
										'											ĺ
eque	ence	1	М	-	N	A	L	s	D R	Т			1 [sec	uen	ce	1	S	D F	R T	
eque	ence	2	М	G	s	D	R	т	T E	т			Н			ce	2	S	D F		
										-		-	ı	SCC	re			2	4 6	5 3	1

WIBR Sequence Analysis Course, $\ ^{\circledR}$ Whitehead Institute, February 2004

20


Original "Ungapped" BLAST Algorithm (1990)

- To improve speed, use a word based hashing scheme to index database
- Limit search for similarities to only the region near matching words
- Use Threshold parameter to rate neighbor words
- Extend match left and right to search for high scoring alignments

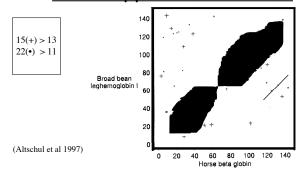
Original BLAST Algorithm (1990)

Query word (W=3)

 ${\tt Query: \ GSVEDTTGSQSLAALLNKCKT} PQG{\tt QRLVNQWIKQPLM}$

Query: 325 SLAALLNKCKT**PQG**QRLVNQWIKQPLMDKNRIEERLNLVEA +LA++L+ TP G R++ +W+ P+ D + ER I A Sbjct: 290 TLASVLDCTVT**PMG**SRMLKRWLHMPVRDTRVLLERQQTIGA

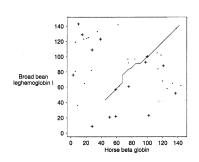
WIBR Sequence Analysis Course, © Whitehead Institute, February 2004


BLAST Refinements (1997)

- "two-hit" method for extending word pairs
- Gapped alignments
- Additional algorithms
 - Iterate with position-specific matrix (PSI-BLAST)
 - Pattern-hit initiated BLAST (PHI-BLAST)

WIBR Sequence Analysis Course, © Whitehead Institute, February 2004

25


Gapped BLAST

WIBR Sequence Analysis Course, © Whitehead Institute, February 2004

2

Gapped BLAST

(Altschul et al 1997)
WIBR Sequence Analysis Course, © Whitehead Institute, February 2004

27

Programs to Compare two sequences - Unix or Web

NCBI

BLAST 2 Sequences

EMBOSS

water - Smith-Waterman needle - Needleman -Wunsch dotmatch (dot plot) einverted or palindrome (inverted repeats) equicktandem or etandem (tandem repeats)

Other

lalign (multiple matching subsegments in two sequences)

WIBR Sequence Analysis Course, ${\small \circledcirc}$ Whitehead Institute, February 2004

28

Topics to Cover

- Introduction
- Scoring alignments
- Alignment methods
- Significance of alignments
 - How strong can alignment be by chance alone?
- Database searching methods

Statistical Significance

- <u>Raw Scores</u> score of an alignment equal to the sum of substitution and gap scores.
- <u>Bit scores</u> scaled version of an alignment's raw score that accounts for the statistical properties of the scoring system used.
- <u>E-value</u> expected number of distinct alignments that would achieve a given score by chance. Lower E-value => more significant.

WIBR Sequence Analysis Course, © Whitehead Institute, February 2004

WIBR Sequence Analysis Course, © Whitehead Institute, February 2004

Some formulas

 $\mathbf{E} = \mathbf{K} \mathbf{m} \mathbf{n} \, \mathbf{e}^{-\lambda \mathbf{S}}$

This is the Expected number of high-scoring segment pairs (HSPs) with score at least S for sequences of length m and n.

This is the E value for the score S.

WIBR Sequence Analysis Course, © Whitehead Institute, February 2004

Topics to Cover

- Introduction
- Scoring alignments
- · Alignment methods
- Significance of alignments
- Database searching methods
 - BLAST
 - BLAST vs. FASTA
 - BLAT

WIBR Sequence Analysis Course, © Whitehead Institute, February 2004

32

Questions

- Why do a database search?
- What database should be searched?
- What alignment algorithm to use?
- What do the results mean?
- What parameters can be changed?
 - Substitution matrices
 - Statistical significance
 - Filtering for low complexity

WIBR Sequence Analysis Course, © Whitehead Institute, February 2004

33

BLASTP Results

	Score	E	
Sequences producing significant alignments:	(bits)	Value	
gi 34862150 ref XP 345634.1 similar to mismatch repair pro	209	5e-54	L
gi 36949366 ref NP_002431.2 mutS homolog 4; mutS (E. coli)	162	9e-40	
<pre>gi 34481396 emb CAC79990.1 sperm protein [Homo sapiens]</pre>	152	1e-36	L
gi 34861090 ref XP_227831.2 similar to MutS homolog 4 [Rat	147	3e-35	L
gi 34872785 ref XP_213395.2 similar to hypothetical protei	33	0.62	L
gi 34853116 ref XP 345138.1 similar to hypothetical protei	32	1.3	L
gi 34783109 gb AAH01726.2 Unknown (protein for IMAGE:35345	32	1.6	
gi 16307283 gb AAH09731.1 AAH09731 Similar to hypothetical	31	3.1	L
gi 34868124 ref XP 221530.2 similar to mKIAA0719 protein[31	3.4	L
gi 34853816 ref XP_344817.1 similar to FGFR1 oncogene part	3.0	7.8	L

Alignments

Get selected sequences Select all Deselect all

⇒<u>gi|34862150|ref|XP 345634.1|</u> ■ similar to mismatch repair protein MSH6 [Rattus norvegicus]
Length = 1541

Score = 209 bits (533), Expect = 5e-54 Identities = 174/617 (28%), Positives = 283/617 (45%), Gaps = 78/617 (12%)

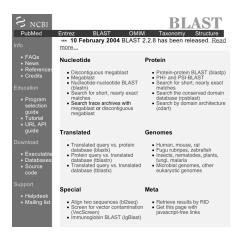
WIBR Sequence Analysis Course, © Whitehead Institute, February 2004

BLAT

- WU-BLAST first for gapped alignments
- Use different scoring system for gaps
- Report different statistics
- WU-BLAST does not filter low-complexity by default

WU-BLAST VS NCBI BLAST

- WU-BLAST looks for and reports multiple regions of similarity
- Results will be different!


- Blast-Like Alignment Tool
- Developed by Jim Kent at UCSC
- For DNA it is designed to quickly find sequences of >= 95% similarity of length 40 bases or more.
- For proteins it finds sequences of >= 80% similarity of length 20 amino acids or more.
- DNA BLAT works by keeping an index of the entire genome in memory - non-overlapping 11-mers (< 1 GB of RAM)
- Protein BLAT uses 4-mers (~ 2 GB)

FASTA

- Index "words" and locate identities
- Rescore best 10 regions
- Find optimal subset of initial regions that can be joined to form single alignment
- Align highest scoring sequences using Smith-Waterman

WIBR Sequence Analysis Course, © Whitehead Institute, February 2004

31

WIBR Sequence Analysis Course, © Whitehead Institute, February 2004

20

Basic Searching Strategies

- Search early and often
- Use specialized databases
- Use multiple matrices
- Use filters
- Consider Biology

WIBR Sequence Analysis Course, © Whitehead Institute, February 2004