

Normalization revisited Microarray Data Collect data on n DNA samples (e.g. rows, genes, promotors, • MGED Data Transformation and exons, etc.) for p mRNA samples of tissues or experimental conditions (eg. columns, time course, pathogen exposure, Normalization Working Group - Cathy Ball mating type, etc) (Stanford) and John Quackenbush (TIGR) x_{1p} *x*₁₂ x₁₁ http://genome-www5.stanford.edu/mged/normalization.html Matrix (n x p) = x_{21} x22 • • • • x_{2p} ÷ ÷ : x_n WIBR Microarray Course, © Whitehead Institute, May 2004 WIBR Microarray Course, © Whitehead Institute, May 2004

11

- bottom-up: agglomerative clustering - top-down: divisive clustering

WIBR Microarray Course, © Whitehead Institute, May 2004

Agglomerative methods (Adapted from Dudoit and Gentleman, 2002)

- Start with n mRNA sample clusters
- At each step, merge two closest clusters using a measure of between-cluster dissimilarity reflecting shape of the clusters
- Between-cluster dissimilarity measures
- Unweighted Pair Group Method with Arithmetic mean (UPGMA): average of pairwise dissimilarities
 - Single-link: minimum of pairwise dissimilarities
 - Complete-link: maximum of pairwise dissimilarities

WIBR Microarray Course, © Whitehead Institute, May 2004

12

• Genes are mapped to relevant partitions depending on the reference vector to which they are most similar

WIBR Microarray Course, © Whitehead Institute, May 2004

18

Citations

- Causton H, Quackenbush J, Brazma A. A Beginner's Guide to Micoarray Gene Expression Data Analysis, Blackwell publishing, 2003.
- Brazma A and Vilo J. Minireview: Gene expression data analysis. FEBS Letters 480:17-24, 2000.
- Quackenbush J. Computational Analysis of Microarray Data. Nature Review | Genetics 2:418-427, 2001.
- Quackenbush J. Microarray data normalization and transformation. Nature Genetics Supp. 32:496-501, 2002.
- Dudoi S and Gentleman R. Classification in microarray experiments. Statistics and Gentleman R. Classification in microarray experiments. (http://www.bioconductor.org/workshop.html)

WIBR Microarray Course, © Whitehead Institute, May 2004

25

Lists of Tools

- Local WI Page
 - http://jura.wi.mit.edu/bio/microarrays/biopage5tools.html
 WADE

WIBR Microarray Course, © Whitehead Institute, May 2004

- R Statistics Package Microarray Tools
 http://www.stat.uni-muenchen.de/~strimmer/rexpress.html
- Bioconductor Project
 - http://www.bioconductor.org/
- EBI
 - http://ep.ebi.ac.uk/Links.html
 - http://ep.ebi.ac.uk/EP/

26

