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Topics for today

o Getting started with Bioconductor

e EXpression microarrays
— Normalization
— Intro to differential expression
— Using ‘limma’ for differential expression
e RNA-Seq
— Preprocessing RNA-seq experiments
— Intro to differential expression
— Using edgeR/DESeq for differential expression




Intro to Bioconductor
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Bioconductor . "

OPEN SOURCE SOFTWARE FOR BIOINFORMATICS

Microarrays

Import Affymetrix, Illumina, Nimblegen,
Agilent, and other platforms. Perform
quality assessment, normalization,
differential expression, clustering,
classification, gene set enrichment,
Bioconductor uses the R statistical genetical genomics and other workflows
programming language, and is open for expression, exon, copy humber, SNP,
source and open development. It methylation and other assays. Access
has two releases each year, more GEO, ArrayExpress, Biomart, UCSC, and
other community resources.

Bioconductor provides tools for the
analysis and comprehension of
high-throughput genomic data.

than 460 packages, and an active
user community.
High Throughput Assays
Import, transform, edit, analyze and
visualize flow cytometric, mass spec,
HTgPCR, cell-based, and other assays.

search: [

Developers About

Sequence Data
Import fasta, fastq, ELAND, MAQ, BWA,

Bowtie, BAM, gff, bed, wig, and other
sequence formats. Trim, transform, align,
and manipulate sequences. Perform
quality assessment, ChIP-seq, differential
expression, RNA-seq, and other
workflows. Access the Sequence Read
Archive.

Annotation

Use microarray probe, gene, pathway,
gene ontology, homology and other
annotations. Access GO, KEGG, NCBI,
Biomart, UCSC, vendor, and other
sources.



Getting started with Bioconductor

e Basic R installation includes no Bioconductor
packages

 Install just what you want
o Steps:

— Select BioC repositories
setRepositories()

— Install desired package(s) like
install .packages(li1mma)
e See web page and local directory for vignettes

o After installing a package/library, you still need to
load it, like

library(l1imma)




Expression microarrays

e One color or two color
* Probes can be short (25-mer) or long (60-mer)
o A transcript may be represented by

— One probe (Agilent)

— Many probes (Affymetrix) grouped into a probeset

e Basic assumption: Intensity of color is correlated
with gene-specific RNA abundance

 Today’s goals:
— Measure relative RNA abundance
— ldentify genes that differ between samples




Preprocessing Affymetrix arrays

e Goals:
— Normalize probes between arrays
— Process mismaitch probes (if present)?
— Summarize probes into probeset values

« Common algorithms address these goals
— MASS (original Affymetrix method)

— RMA
— GCRMA

e Choice of probeset definitions




Starting with Affy arrays in Bioc

 Install ‘affy’ and CDF (chip definition file) package
for your array design

— Example for U133 Plus 2.0 array:
install .packages(““affy”)
install .packages(““hg133plus2cdf’)

e (o to directory with CEL files (containing probe-level

data) and read them

library(affy)
Data = ReadAffy()

* Preprocess into an expression set like
eset.mas5 = mas5(Data)
eset.rma = rma(Data)




Absent/present calls

o For Affymetrix arrays with mismatch probes too,
they can be compared to perfect match probes

— If the values are similar across the set, the probeset is
called “absent”

o After reading a directory of CEL files as Data,

masScalls = mas5calls(Data) # Do calls
# Get actual A/P matrix
masScalls.calls = exprs(mas5calls)

write.table(mas5calls.calls, file="“APs.txt”,
gquote=F, sep="\t"")

You can choose if / how to use the calls.




Normalizing Agilent arrays

Goal is do maximize biological signal and minimize
technical “noise”

Major comparisons to optimize
— Within-array (red vs green channels)
— Between-arrays (all arrays to each other)

Other Issues:
— If / how to use background levels
— If / how to add an offset to all values

All methods rely on assumptions (expectations)

Our favorite two-step method:
— Use loess for within-array normalization
— Use “Aquantile” normalization between arrays




2-color Agilent arrays in Bioc

 Read arrays

maData = read.maimages(dir(pattern = "txt""),
source=""agilent®)

e Background correct (or not)

maData.nobg.0 = backgroundCorrect(maData,
method=""none", offset=0)

e Normalize with loess

MA.loess.O0 = normalizeWithinArrays(
maData.nobg.0, method='"loess'")

 Normalize with Aquantile
MA.loess.q.0 = normalizeBetweenArrays(

MA.loess.0, method="Aquantile')




Assaying differential expression

 Magnitude of fold change
 Magnitude of variation between samples

e Traditional statistical measures of confidence
— T-test
— Moderated t-test
— ANOVA
— Paired t-test
— Non-parametric test (Wilcoxon rank-sum test)

e Other methods




Statistical testing with the t-test

 Considers mean values and variabllity
e Equation for the t-statistic in the Welch test:

mean — mean :
... and then a p-value is calculated

r ; g = data sets to compare
s = standard deviation
n n = no. of measurements

r
S2
r

Disadvantages:
— Genes with small variances are more likely to make the cutoff
— Works best with larger data sets than one usually has




Statistics with lImma

e Step 1: Fit a linear model for each gene
— Starts with normalized expression matrix
— Estimates the variability of the data
— Based on experimental design
— Includes effect of each RNA source
— Command: ImF1It()

o Step 2: Perform moderated t-test for each gene
— Based on desired comparisons

— Calculates A (mean level across all arrays) and M (log2
fold change)

— T-test Is moderated because variation is shared across
genes

— Command: eBayes()




Limma: describing your experiment

FileName Target

GSM230387 OldSedentary y !—Imma g.ets-thls
CENPRUEET |l Information in two ways:

ﬁ Targets/design matrices:

GSM230407 YoungSedentary
GSM230417 YoungTrained

old old | Young | Young | descriptions of RNA

FileName

sedentary| trained | sedentar trained

GSM230387 samples

Eolee0R Contrast matrix: list of
GSM230407 ) ]

GSM230417 desired comparisons l

OldTrained —
OldSedentary

YoungTrained -
YoungSedentary

TrainedVsSedentary

OldSedentary
OldTrained

YoungSedentary

YoungTrained




Multiple hypothesis testing

 When performing one moderated t-test per
probe, we have to be careful of false positives

» Solution: Adjust/correct (increase) p-values to
account for the high-throughput

 Most common method is False Discovery Rate

o Definition/example of FDR:

— If you select a FDR-adjust p-value threshold of 0.05,

then you can expect 5% of your list of differentially
expressed genes to be false positives

Do only as many statistical tests as necessary




RNA-Seq analysis basic steps

* Preprocessing:
— Split by bar codes
— Quality control (and removal of poor-quality reads)
— Remove adapters and linkers

 Map to genome (maybe including gene models)
e Count genes (or transcripts)
« Remove absent genes

e Add offset (such as 1)

— Prevent dividing by O

— Moderate fold change of low-count genes
 |dentify differentially expressed genes




Counts-based statistics

 RNA-seq data representation Is
— Based on counts (integers), not continuous values
— Different from expression array data

o Statistical test must be based on a
corresponding distribution, such as the
— Negative binomial
— Poisson

 EXxpression data has the additional property of
having more variability than expected for these
distributions so Is described as overdispersed




Assaying differential expression

e Robust and confident analysis requires
replication!

« Different R packages are available for
experiments
— without replication (but don’t believe the statistics)

— with replication
* With replication, BaRC has had success with
— edgeR
— DESeq
— baySeq




Getting started in Bioc

Input data: matrix of counts

brain_1 brain_2 UHR 1 UHR 2
A1BG 46 65 96 107
A1CF 1 1 59 59

Install package(s) [just the first time]

o Call package
Ex: library(DESeq)

e Read input matrix

counts = read.delim(counts.txt,
row.names=1)




Intro to DESeq

 Requires raw counts, not RPKM values

e Takes sample depth into consideration using
— Total read counts
— Another more complex method

 Based on the negative binomial distribution
o Extends (and may slightly outperform) edgeR
e Calculates fold change and p-values




Quick start for DESeq

Describe your samples (brain x2, UHR x2)
groups = c(rep('brain',2), rep(’'UHR", 2))

Create a “count data set”
cds = newCountDataSet(counts, groups)

Estimate effective library size
cds = estimateSizeFactors(cds)

Estimate variance for each gene (key step)
cds = estimateVarianceFunctions(cds)

Run differential expression statistics (for brain/UHR)
results = nbinomTest(cds, “UHR”, “brain’)




Helpful figures

o Scatterplot:

log2 RNA level 1 vs. log2 RNA level 1
 MA plot:

log2 ratio vs. mean RNA level
e Volcano plot

-logl0 (FDR) vs log2 ratio
 Heat map (selected genes) — Try Java Treeview

RNA level vs reference (control or mean/median of all
samples)

il
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| ocal resources

BaRC Standard Operating Procedures (SOPs)

Previous Hot Topic:
— ldentifying and displaying differentially expressed genes

Previous class:
— Microarray Analysis (2007)

R scripts for Bioinformatics
— http://iona.wi.mit.edu/bio/bioinfo/Rscripts/

We're glad to share commands and/or scripts to get
you started




For more information

e lImma:

Smyth GK. Linear models and empirical bayes methods for assessing differential
expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3:Article 3.

e edgeR
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for

differential expression analysis of digital gene expression data. Bioinformatics.
2010 Jan 1;26(1):139-40.

e DESeq

Anders S, Huber W. Differential expression analysis for sequence count data.
Genome Biol. 2010;11(10):R106.

e baySeq
Hardcastle TJ, Kelly KA. baySeq: empirical Bayesian methods for identifying

differential expression in sequence count data. BMC Bioinformatics. 2010 Aug
10;11:422.




Upcoming Hot Topics

e Unix, Perl, and Perl modules (short course in March)
o Quality control for high-throughput data

« RNA-Seq analysis

* Gene list enrichment analysis

o Galaxy

e Sequence alignment: pairwise and multiple

o See http://iona.wi.mit.edu/bio/hot_topics/
e Otherideas? Let us know.




