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Topics for todayTopics for today

• Getting started with Bioconductor
• Expression microarrays• Expression microarrays

– Normalization
I t t diff ti l i– Intro to differential expression

– Using ‘limma’ for differential expression
• RNA-Seq

– Preprocessing RNA-seq experiments
– Intro to differential expression
– Using edgeR/DESeq for differential expression
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Intro to BioconductorIntro to Bioconductor
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Getting started with BioconductorGetting started with Bioconductor
Basic R installation incl des no Biocond ctor• Basic R installation includes no Bioconductor
packages

• Install just what you wantInstall just what you want
• Steps:

– Select BioC repositories
setRepositories()

– Install desired package(s) like
install.packages(limma)p g ( )

• See web page and local directory for vignettes
• After installing a package/library, you still need to 

l d it likload it, like
library(limma)
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Expression microarraysExpression microarrays
O l t l• One color or two color

• Probes can be short (25-mer) or long (60-mer)
• A transcript may be represented by 

– One probe (Agilent)
– Many probes (Affymetrix) grouped into a probeset

• Basic assumption: Intensity of color is correlated 
with gene-specific RNA abundance

• Today’s goals:
– Measure relative RNA abundance
– Identify genes that differ between samples
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Preprocessing Affymetrix arraysPreprocessing Affymetrix arrays

• Goals:
– Normalize probes between arrays
– Process mismatch probes (if present)?
– Summarize probes into probeset values

• Common algorithms address these goals
– MAS5 (original Affymetrix method)( g y )
– RMA
– GCRMAGCRMA

• Choice of probeset definitions 
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Starting with Affy arrays in BiocStarting with Affy arrays in Bioc
I t ll ‘ ff ’ d CDF ( hi d fi iti fil ) k• Install ‘affy’ and CDF (chip definition file) package 
for your array design

Example for U133 Plus 2 0 array:– Example for U133 Plus 2.0 array: 
install.packages(“affy”)
install.packages(“hg133plus2cdf”) 

• Go to directory with CEL files (containing probe-level 
data) and read them
lib ( ff )library(affy)
Data = ReadAffy()

• Preprocess into an expression set likePreprocess into an expression set like
eset.mas5 = mas5(Data)
eset.rma = rma(Data)
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Absent/present callsAbsent/present calls

• For Affymetrix arrays with mismatch probes too, 
they can be compared to perfect match probes
– If the values are similar across the set, the probeset is 

called “absent”
• After reading a directory of CEL files as Data,

mas5calls = mas5calls(Data) # Do calls
# Get actual A/P matrix
mas5calls.calls = exprs(mas5calls)
write table(mas5calls calls file=“APs txt”write.table(mas5calls.calls, file= APs.txt , 
quote=F, sep="\t")

• You can choose if / how to use the calls.You can choose if / how to use the calls.
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Normalizing Agilent arraysNormalizing Agilent arrays
Goal is do ma imi e biological signal and minimi e• Goal is do maximize biological signal and minimize 
technical “noise”

• Major comparisons to optimizeMajor comparisons to optimize
– Within-array (red vs green channels)
– Between-arrays (all arrays to each other)

O• Other issues:
– If / how to use background levels
– If / how to add an offset to all values– If / how to add an offset to all values

• All methods rely on assumptions (expectations)
• Our favorite two-step method:p

– Use loess for within-array normalization
– Use “Aquantile” normalization between arrays  
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2 color Agilent arrays in Bioc2-color Agilent arrays in Bioc
R d• Read arrays
maData = read.maimages(dir(pattern = "txt"), 
source="agilent“)source agilent )

• Background correct (or not)
maData.nobg.0 = backgroundCorrect(maData, g g ( ,
method="none", offset=0)

• Normalize with loess
MA.loess.0 = normalizeWithinArrays( 
maData.nobg.0, method="loess")

• Normalize with Aquantile• Normalize with Aquantile
MA.loess.q.0 = normalizeBetweenArrays( 
MA.loess.0, method="Aquantile")
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Assaying differential expressionAssaying differential expression

• Magnitude of fold change
• Magnitude of variation between samples
• Traditional statistical measures of confidence

– T-test
– Moderated t-test
– ANOVA
– Paired t-test
– Non-parametric test (Wilcoxon rank-sum test)

• Other methods
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Statistical testing with the t testStatistical testing with the t-test
C id l d i bilit• Considers mean values and variability  

• Equation for the t-statistic in the Welch test:

… and then a p-value is calculatedgmeanrmean
t


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s = standard deviation
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gs
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

• Disadvantages:

n = no. of  measurementsgnrn

g
– Genes with small variances are more likely to make the cutoff
– Works best with larger data sets than one usually has
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Statistics with limmaStatistics with limma
Step 1 Fit a linear model for each gene• Step 1: Fit a linear model for each gene
– Starts with normalized expression matrix
– Estimates the variability of the datast ates t e a ab ty o t e data
– Based on experimental design
– Includes effect of each RNA source

Command l Fit()– Command: lmFit()
• Step 2: Perform moderated t-test for each gene

– Based on desired comparisonsBased on desired comparisons
– Calculates A (mean level across all arrays) and M (log2 

fold change)
T test is moderated because variation is shared across– T-test is moderated because variation is shared across 
genes

– Command: eBayes()
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Limma: describing your experimentLimma: describing your experiment
Fil N T t • Limma gets this 

information in two ways:

FileName Target
GSM230387 OldSedentary
GSM230397 OldTrained
GSM230407 YoungSedentary

Targets/design matrices: 
descriptions of RNA 

l

GSM230407 YoungSedentary
GSM230417 YoungTrained

FileName Old
sedentary

Old
trained

Young
sedentary

Young
trained samples

Contrast matrix: list of 
desired comparisons

sedentary trained sedentary trained
GSM230387 1 0 0 0
GSM230397 0 1 0 0
GSM230407 0 0 1 0 desired comparisonsGSM230417 0 0 0 1

OldTrained –
OldS d t

YoungTrained -
Y S d t TrainedVsSedentaryOldSedentary YoungSedentary y

OldSedentary -1 0 -0.5

OldTrained 1 0 0.5
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YoungSedentary 0 -1 -0.5
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Multiple hypothesis testingMultiple hypothesis testing
Wh f i d t d t t t• When performing one moderated t-test per 
probe, we have to be careful of false positives
S l ti Adj t/ t (i ) l t• Solution: Adjust/correct (increase) p-values to 
account for the high-throughput
M t th d i F l Di R t• Most common method is False Discovery Rate

• Definition/example of FDR:
– If you select a FDR-adjust p-value threshold of 0.05,

then you can expect 5% of your list of differentially 
expressed genes to be false positivesexpressed genes to be false positives

• Do only as many statistical tests as necessary
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RNA Seq analysis basic stepsRNA-Seq analysis basic steps 
P i• Preprocessing:
– Split by bar codes

Quality control (and removal of poor quality reads)– Quality control (and removal of poor-quality reads)
– Remove adapters and linkers

• Map to genome (maybe including gene models)Map to genome (maybe including gene models)
• Count genes (or transcripts) 
• Remove absent genesRemove absent genes
• Add offset (such as 1)

– Prevent dividing by 0Prevent dividing by 0
– Moderate fold change of low-count genes 

• Identify differentially expressed genesy y p g
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Counts based statisticsCounts based statistics
RNA d t t ti i

Counts-based statisticsCounts-based statistics
• RNA-seq data representation is

– Based on counts (integers), not continuous values
Diff t f i d t– Different from expression array data

• Statistical test must be based on a 
corresponding distribution such as thecorresponding distribution, such as the
– Negative binomial 

Poisson– Poisson 
• Expression data has the additional property of 

having more variability than expected for thesehaving more variability than expected for these 
distributions so is described as overdispersed
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Assaying differential expressionAssaying differential expression
R b t d fid t l i i• Robust and confident analysis requires 
replication!
Diff t R k il bl f• Different R packages are available for 
experiments

ith t li ti (b t d ’t b li th t ti ti )– without replication (but don’t believe the statistics)
– with replication

With replication BaRC has had success with• With replication, BaRC has had success with
– edgeR

DESeq– DESeq
– baySeq
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Getting started in BiocGetting started in Bioc
I t d t t i f t• Input data: matrix of counts

brain 1 brain 2 UHR 1 UHR 2_ _ _ _
A1BG 46 65 96 107
A1CF 1 1 59 59

• Install package(s) [just the first time]
• Call packageCall package

Ex: library(DESeq)

• Read input matrixRead input matrix
counts = read.delim(counts.txt, 
row.names=1)
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Intro to DESeqIntro to DESeq

• Requires raw counts, not RPKM values
• Takes sample depth into consideration usingp p g

– Total read counts
– Another more complex methodp

• Based on the negative binomial distribution
• Extends (and may slightly outperform) edgeR• Extends (and may slightly outperform) edgeR
• Calculates fold change and p-values
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Quick start for DESeqQuick start for DESeq
• Describe your samples (brain x2, UHR x2)

groups = c(rep("brain",2), rep("UHR", 2))

• Create a “count data set”
cds = newCountDataSet(counts, groups)

• Estimate effective library size
cds = estimateSizeFactors(cds)

• Estimate variance for each gene (key step)
cds = estimateVarianceFunctions(cds)

• Run differential expression statistics (for brain/UHR)
results = nbinomTest(cds, “UHR”, “brain”)
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Helpful figuresHelpful figures

• Scatterplot:
log2 RNA level 1 vs. log2 RNA level 1 

• MA plot:
log2 ratio vs. mean RNA levelg

• Volcano plot
-log10 (FDR) vs log2 ratiolog10 (FDR) vs log2 ratio 

• Heat map (selected genes) – Try Java Treeview
RNA level vs reference (control or mean/median of allRNA level vs reference (control or mean/median of all 

samples)
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Local resourcesLocal resources

• BaRC Standard Operating Procedures (SOPs)
• Previous Hot Topic:p

– Identifying and displaying differentially expressed genes
• Previous class:

– Microarray Analysis (2007)
• R scripts for Bioinformaticsp

– http://iona.wi.mit.edu/bio/bioinfo/Rscripts/
• We’re glad to share commands and/or scripts to getWe re glad to share commands and/or scripts to get 

you started
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For more informationFor more information
li• limma: 

Smyth GK. Linear models and empirical bayes methods for assessing differential 
expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3:Article 3.

• edgeR
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for 

differential expression analysis of digital gene expression data. Bioinformatics.differential expression analysis of digital gene expression data. Bioinformatics. 
2010 Jan 1;26(1):139-40.

• DESeq
Anders S Huber W Differential expression analysis for sequence count dataAnders S, Huber W. Differential expression analysis for sequence count data. 

Genome Biol. 2010;11(10):R106.

• baySeq
Hardcastle TJ, Kelly KA. baySeq: empirical Bayesian methods for identifying 

differential expression in sequence count data. BMC Bioinformatics. 2010 Aug 
10;11:422.

24



Upcoming Hot TopicsUpcoming Hot Topics

• Unix, Perl, and Perl modules (short course in March)
Q alit control for high thro ghp t data• Quality control for high-throughput data

• RNA-Seq analysis
G li t i h t l i• Gene list enrichment analysis

• Galaxy
S li t i i d lti l• Sequence alignment: pairwise and multiple

S htt //i i it d /bi /h t t i /• See http://iona.wi.mit.edu/bio/hot_topics/
• Other ideas?  Let us know.

25


