Topics for today

Introduction to Bioconductor:

Using R with high-throughput genomics

BaRC Hot Topics - Oct 2011

George Bell, Ph.D. http://iona.wi.mit.edu/bio/education/R2011/

Getting started with Bioconductor

- Expression microarrays
 - Normalization
 - Intro to differential expression
 - Using 'limma' for differential expression
- RNA-Seq
 - Preprocessing RNA-seq experiments
 - Intro to differential expression
 - Using edgeR/DESeq for differential expression

Getting started with Bioconductor

- Basic R installation includes no Bioconductor packages
- Install just what you want
- Steps:
 - Select BioC repositories
 setRepositories()
 - Install desired package(s) like install.packages(limma)
- See web page and local directory for vignettes
- After installing a package/library, you still need to load it, like
 - library(limma)

Expression microarrays

- One color or two color
- Probes can be short (25-mer) or long (60-mer)
- A transcript may be represented by
 - One probe (Agilent)
 - Many probes (Affymetrix) grouped into a probeset
- Basic assumption: Intensity of color is correlated with gene-specific RNA abundance
- Today's goals:
 - Measure relative RNA abundance
 - Identify genes that differ between samples

Preprocessing Affymetrix arrays

- Goals:
 - Normalize probes between arrays
 - Process mismatch probes (if present)?
 - Summarize probes into probeset values
- Common algorithms address these goals
 - MAS5 (original Affymetrix method)
 - RMA
 - GCRMA
- Choice of probeset definitions

Starting with Affy arrays in Bioc

- Install 'affy' and CDF (chip definition file) package for your array design
 - Example for U133 Plus 2.0 array: install.packages("affy") install.packages("hg133plus2cdf")
- Go to directory with CEL files (containing probe-level data) and read them library(affy)

```
Data = ReadAffy()
```

 Preprocess into an expression set like eset.mas5 = mas5(Data) eset.rma = rma(Data)

Absent/present calls

- For Affymetrix arrays with mismatch probes too, they can be compared to perfect match probes
 - If the values are similar across the set, the probeset is called "absent"
- After reading a directory of CEL files as Data, mas5calls = mas5calls(Data) # Do calls # Get actual A/P matrix mas5calls.calls = exprs(mas5calls)

```
write.table(mas5calls.calls, file="APs.txt",
    quote=F, sep="\t")
```

• You can choose if / how to use the calls.

Normalizing Agilent arrays

- Goal is do maximize biological signal and minimize technical "noise"
- Major comparisons to optimize
 - Within-array (red vs green channels)
 - Between-arrays (all arrays to each other)
- Other issues:
 - If / how to use background levels
 - If / how to add an offset to all values
- All methods rely on assumptions (expectations)
- Our favorite two-step method:
 - Use loess for within-array normalization
 - Use "Aquantile" normalization between arrays

2-color Agilent arrays in Bioc

• Read arrays

maData = read.maimages(dir(pattern = "txt"), source="agilent")

- Background correct (or not) maData.nobg.0 = backgroundCorrect(maData, method="none", offset=0)
- Normalize with loess
 MA.loess.0 = normalizeWithinArrays(
 maData.nobg.0, method="loess")

MA.loess.0, method="Aquantile")

Normalize with Aquantile
 MA.loess.q.0 = normalizeBetweenArrays(

Assaying differential expression

- Magnitude of fold change
- Magnitude of variation between samples
- Traditional statistical measures of confidence
 - T-test
 - Moderated t-test
 - ANOVA
 - Paired t-test
 - Non-parametric test (Wilcoxon rank-sum test)
- Other methods

Statistical testing with the t-test

- Considers mean values and variability
- Equation for the t-statistic in the Welch test:

- ... and then a p-value is calculated
- r; g = data sets to compare
- s = standard deviation
- n = no. of measurements
- Disadvantages:
 - Genes with small variances are more likely to make the cutoff
 - Works best with larger data sets than one usually has

Statistics with limma

- Step 1: Fit a linear model for each gene
 - Starts with normalized expression matrix
 - Estimates the variability of the data
 - Based on experimental design
 - Includes effect of each RNA source
 - Command: lmFit()
- Step 2: Perform moderated t-test for each gene
 - Based on desired comparisons
 - Calculates A (mean level across all arrays) and M (log2 fold change)
 - T-test is moderated because variation is shared across genes
 - Command: eBayes()

Limma: describing your experiment

FileName			Target			• 1
GSM	GSM230387		OldSedentary			
GSM	GSM230397		OldTrained			ii
GSM230407		Your	YoungSedentary			1
GSM	GSM230417		YoungTrained			
FileN	ame	Old sedentary	Old trained	Yc sed	oung entary	Young trained
GSM2	30387	1	0		0	0
GSM2	30397	0	1		0	0
GSM2	30407	0	0		1	0
GSM2	30417	0	0		0	1

- Limma gets this information in two ways:
 - Targets/design matrices:
 descriptions of RNA
 samples

Contrast matrix: list of desired comparisons

		OldTrained – OldSedentary	YoungTrained - YoungSedentary	TrainedVsSedentary	
	OldSedentary	-1	0	-0.5	
	OldTrained	1	0	0.5	
L	YoungSedentary	0	-1	-0.5	~
(YoungTrained	0	1	0.5	K(
				Beinformatics and Research	Conputing

Multiple hypothesis testing

- When performing one moderated t-test per probe, we have to be careful of false positives
- Solution: Adjust/correct (increase) p-values to account for the high-throughput
- Most common method is False Discovery Rate
- Definition/example of FDR:
 - If you select a FDR-adjust p-value threshold of 0.05, then you can expect 5% of your list of differentially expressed genes to be false positives
- Do only as many statistical tests as necessary

RNA-Seq analysis basic steps

- Preprocessing:
 - Split by bar codes
 - Quality control (and removal of poor-quality reads)
 - Remove adapters and linkers
- Map to genome (maybe including gene models)
- Count genes (or transcripts)
- Remove absent genes
- Add offset (such as 1)
 - Prevent dividing by 0
 - Moderate fold change of low-count genes
- Identify differentially expressed genes

Counts-based statistics

- RNA-seq data representation is
 - Based on counts (integers), not continuous values
 - Different from expression array data
- Statistical test must be based on a corresponding distribution, such as the
 - Negative binomial
 - Poisson
- Expression data has the additional property of having more variability than expected for these distributions so is described as overdispersed

Assaying differential expression

- Robust and confident analysis requires replication!
- Different R packages are available for experiments
 - without replication (but don't believe the statistics)
 - with replication
- With replication, BaRC has had success with
 - edgeR
 - DESeq
 - baySeq

Getting started in Bioc

· Input data: matrix of counts

	brain_1	brain_2	UHR_1	UHR_2
A1BG	46	65	96	107
A1CF	1	1	59	59

- Install package(s) [just the first time]
- Call package

Ex: library(DESeq)

• Read input matrix

counts = read.delim(counts.txt, row.names=1)

Intro to DESeq

- Requires raw counts, not RPKM values
- Takes sample depth into consideration using
 - Total read counts
 - Another more complex method
- Based on the negative binomial distribution
- Extends (and may slightly outperform) edgeR
- Calculates fold change and p-values

Quick start for DESeq

- Describe your samples (brain x2, UHR x2) groups = c(rep("brain",2), rep("UHR", 2))
- Create a "count data set"
 cds = newCountDataSet(counts, groups)
- Estimate effective library size cds = estimateSizeFactors(cds)
- Estimate variance for each gene (key step) cds = estimateVarianceFunctions(cds)
- Run differential expression statistics (for brain/UHR) results = nbinomTest(cds, "UHR", "brain")

Helpful figures

- Scatterplot: log2 RNA level 1 vs. log2 RNA level 1
- MA plot: log2 ratio vs. mean RNA level
- Volcano plot -log10 (FDR) vs log2 ratio

 Heat map (selected genes) – Try Java Treeview RNA level vs reference (control or mean/median of all

samples)

Local resources

- BaRC Standard Operating Procedures (SOPs)
- Previous Hot Topic:
 - Identifying and displaying differentially expressed genes
- Previous class:
 - Microarray Analysis (2007)
- R scripts for Bioinformatics
 - http://iona.wi.mit.edu/bio/bioinfo/Rscripts/
- We're glad to share commands and/or scripts to get you started

For more information

• limma:

Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3:Article 3.

edgeR

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010 Jan 1;26(1):139-40.

DESeq

Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106.

baySeq

Hardcastle TJ, Kelly KA. baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics. 2010 Aug 10;11:422.

Upcoming Hot Topics

- Unix, Perl, and Perl modules (short course in March)
- Quality control for high-throughput data
- RNA-Seq analysis
- Gene list enrichment analysis
- Galaxy
- Sequence alignment: pairwise and multiple
- See http://iona.wi.mit.edu/bio/hot_topics/
- Other ideas? Let us know.

