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This document accompanies the slides from BaRC’s Introduction to Bioconductor and shows how to generate all analyses
and figures. See the accompanying slides and data files at http://iona.wi.mit.edu/bio/education/R2011/ or material
from other Hot Topics talks at http://iona.wi.mit.edu/bio/hot_topics/l All of these commands should work similarly
if run on Windows/Mac (using the typical R installation or RStudio) or Linux operating systems (such as tak).

1 Getting the datasets used in the vignette

Start by downloading all files from the Hot Topics web page. Create a class directory (BaRC_class) and inside that, directories
called Affymetrix, Agilent, and RNASeq. Put the files for each dataset in the corresponding directory. To get started, make
BaRC_class your "working directory”. To find where R is now (for my analysis; your directory will be different), try

> getwd ()
[1] "/nfs/BaRC/Hot_Topics_2011-2012/R_Bioconductor/class_3/vignette"

To change the working directory on your computer, go to File => Change dir... menu. On tak (or you can do it this
way on your computer, too), use the setwd() command, like setwd ("/lab/solexa_public/Graceland_Lab/Elvis"). We're
going to enter each directory to get the data but then print output files up one level in the directory hierarchy in BaRC_class
(hence the setwd("../") commands).

You can begin in any of these three sections:

e 2| Affymetrix arrays
o [3] Agilent arrays
e [l RNA-Seq

2 Affymetrix arrays

The initial processing of the two types of arrays start out quite differently, but the statistics are quite similar. Feel free to
skip sections that appear redundant.

2.1 Getting started with Affymetrix arrays

Go to the Affymetrix directory you just created and see what input data files are there.

> setwd("Affymetrix")

> dir()
[1] "Affy_targets.txt" "GSM230387.cel"
[3] "GSM230388.cel" "GSM230389.cel"
[5] "GSM230390.cel" "GSM230397.cel"
[7] "GSM230398.cel" "GSM230399.cel"
[9] "GSM230400.cel" "GSM230407 .cel"
[11] "GSM230408.cel" "GSM230409.cel"
[13] "GSM230410.cel" "GSM230417 .cel"
[15] "GSM230418.cel" "GSM230419.cel"
[17] "GSM230420.cel" "hgul33plus2.symbols.txt"
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The directory should include 16 CEL files, each of which contain probe-level measurements for one biological sample. These
arrays are a subset of a human study (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9103) that examines
”Skeletal muscle transcript profiles in trained or sedentary young and old Subjects”. You have four CEL files each from 4
groups: young sedentary, young trained, old sedentary, and old trained. Running quality control on the set of arrays can be
helpful, and this will be covered in a future Hot Topics talk.

Let’s load the Bioconductor packages affy and limma (which include many of the commands we’ll be using).

> library(affy)
> library(limma)

If you get an error that affy or limma can’t be found, it’s probably not installed. In that case you can install it by adding
the Bioc repositories to the usual CRAN repository (with the command setRepositories()) and then install the package
with a command like install.packages("limma"). After installation, you still need to run the command library(affy)
or library(limma) to access the library.

2.2 Preprocessing Affymetrix arrays

Our first task with the set of Affymetrix arrays (CEL files) is to process, normalize, and summarize them into probeset-level
RNA levels with the affy package. We start by reading the current directory of CEL files and creating an "AffyBatch” object
that includes probe-level data for a set of arrays. They all need to be of the same array design (such as our sample data of
U133 Plus 2.0 arrays). At this point we’ll also need an R package describing the array design we’re using. Usually R will install
the package automatically, but if it doesn’t you can always use a command like install.packages("hgul33plus2cdf"). If
we want to use an array design (CDF) other than the standard Affy design, that would need to be installed by hand. We
can also get some general information about our set of arrays.

> CELs = ReadAffy()
> CELs

AffyBatch object

size of arrays=1164x1164 features (22 kb)
cdf=HG-U133_Plus_2 (54675 affyids)

number of samples=16

number of genes=54675
annotation=hgul33plus2

notes=

> setwd("../")

Now we can preprocess this set of arrays using algorithms such as MAS5 (the original Affymetrix algorithm), RMA, or
GCRMA. Be aware that MAS5 outputs actual probeset values, whereas RMA and GCRMA output log2-transformed values.
For this vignette we’ll use RMA to create an "ExpressionSet”. This step takes a few minutes.

> eset = rma(CELs)

Background correcting
Normalizing
Calculating Expression

If we wanted to use another algorithm, we could have instead used a command like eset = gcrma(CELs) or eset =
mas5(CELs).

At this point we may want to print a matrix of all log2 expression values. The eset we just created includes more than
just expression levels, and to access them we need to use the exprs command. Once we have that matrix (rounded to 4
decimal places) we can easily print it as a tab-delimited text file. We add the rownames as an extra column so the column
headers match up correctly when viewed in Excel.

> eset.values = round(exprs(eset),4)
> write.table(cbind(rownames (eset.values), eset.values), file="Affy_log2_rma_values.txt",
+ sep="\t", row.names=F, quote=F)

From the AffyBatch object we can also get Absent/Present calls, the Affymetrix method (for chips with exact match
and mismatch probes) for calling gene status, also including M for Marginal. As with expression values, the output is more
complex than a simple matrix so we need the exprs command to get a matrix of As, Ms, and Ps.
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> masbcalls = mas5calls(CELs)

Getting probe level data...
Computing p-values
Making P/M/A Calls

> masbcalls.calls = exprs(masb5calls)
> write.table(cbind(rownames (mas5calls.calls), masbcalls.calls), file="Affy AP _calls.txt",
+ sep="\t", row.names=F, quote=F)

We can use this metric in a variety of ways, such as filtering out probesets that are absent across all samples. We start
by concatenating all AP calls for a probeset and then can compare the number of rows (probesets) before and after filtering.

> masbcalls.merged = apply(masbcalls.calls, 1, paste, collapse="")
> eset.filtered = eset[masbScalls.merged!="AAAAAAAAAAAAAAAA",]
> nrow(eset)

Features
54675

> nrow(eset.filtered)

Features
29565

We have the choice of proceeding with either the whole or filtered datasets. For now, let’s continue with the whole dataset.

2.3 Identifying differentially expressed probesets from Affymetrix arrays

Now come the differential expression statistics, answering questions about which probesets indicate different RNA levels
in different groups. We have the processed expression data, and now we have to describe our experimental design to the
computer. The first step is to read a tab-delimited file including columns for FileName (of each CEL file) and Target (a name
of the sample used for the hybridization). You should have a file called Affy_targets.txt in the Affymetrix directory (or
download it from the Hot Topics page). Read the file and then use model.matrix() to convert the targets matrix into a
design matrix.

> targets = read.delim("Affymetrix/Affy_targets.txt")
> design = model.matrix(~0+targets$Target)

> colnames(design) = sort(unique (targets$Target))

> rownames (design) = targets$FileName

> head(design)

0ld_sedentary 0ld_trained Young_sedentary Young_trained
GSM230387 . cel 1 0 0
GSM230388.cel
GSM230389.cel
GSM230390. cel
GSM230397 . cel
GSM230398.cel
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While we’re making matrices, let’s make a contrast matrix, which describes the comparisons we’d like to make. Since
we're starting with log-transformed values, subtraction is really division of the untransformed values. We can make a list of
all desired comparisons, optionally naming any of them. Then let’s look at our output to be sure it makes sense.

contrast.matrix = makeContrasts(

0ld_trained - 0ld_sedentary,

Young_trained - Young_sedentary,

TrainedVsSedentary = ((0ld_trained - 0ld_sedentary) + (Young_trained - Young_sedentary))/2,
levels=design)

contrast.matrix

V + 4+ + + Vv



Contrasts

Levels 0ld_trained - 0ld_sedentary Young_trained - Young_sedentary
0ld_sedentary -1 0
0ld_trained 1 0
Young_sedentary 0 -1
Young_trained 0 1

Contrasts

Levels TrainedVsSedentary
Old_sedentary -0.5
0ld_trained 0.5
Young_sedentary -0.5
Young_trained 0.5

Now we’re set to run the statistics we want. This is done in three steps:
e Given an expression matrix, fit a linear model for each “gene” (really probeset) (with 1mFit)

e Given a linear model fit to microarray data, compute estimated coefficients and standard errors for a given set of
contrasts (with contrasts.fit)

e Given a series of related parameter estimates and standard errors, compute moderated t-statistics, moderated F-statistic,
and log-odds of differential expression by empirical Bayes shrinkage of the standard errors towards a common value
(with eBayes)

> fit = ImFit(eset, design)
> fit2 = contrasts.fit(fit, contrast.matrix)
> fit2.ebayes = eBayes(fit2)

At this point we can look at the most differentially expressed probesets for each comparison or simply output all the
data and browse it in Excel. For the former, topTable prints the top genes for a comparison (of number given by coef) and
corrects/adjusts for multiple hypothesis testing (such as with False Discovery Rate).

> topTable(fit2.ebayes, coef=1, adjust="fdr")

ID logFC AveExpr t P.Value adj.P.Val
27523 218237_s_at 2.2789750 4.389281 9.808534 2.923527e-08 0.001598438
33839  224579_at 2.4804347 4.121275 7.208343 1.829193e-06 0.050005571
12184  202735_at 0.7602897 4.201023 6.124738 1.327239e-05 0.241889237
35134  225876_at 1.1684080 4.048014 5.785053 2.552826e-05 0.256469498
35447  226190_at 1.1685729 3.521960 5.684068 3.109962e-05 0.256469498
29702 220417_s_at 0.6212211 6.596310 5.586758 3.766296e-05 0.256469498
38530  229275_at 4.2891931 6.206719 5.558406 3.983298e-05 0.256469498
34401  225143_at 1.0196675 6.225151 5.489743 4.564004e-05 0.256469498
36211  226955_at -1.2948454 5.079199 -5.360829 5.902110e-05 0.256469498
12327 202878_s_at 0.8313796 5.841246 5.318093 6.430143e-05 0.256469498

B

27523 6.041159
33839 3.693731
12184 2.392942
35134 1.941102
35447 1.802686
29702 1.667546
38530 1.627849
34401 1.531108
36211 1.347192
12327 1.285571
> topTable(fit2.ebayes, coef=2, adjust="fdr")

ID logFC AveExpr t P.Value adj.P.Val
27523 218237_s_at 1.4452683 4.389281 6.220324 1.107207e-05 0.6053655
36211  226955_at -1.3574197 5.079199 -5.619895 3.528066e-05 0.9644851
35572  226315_at -0.8380764 4.935372 -5.184157 8.423082e-05 0.9725178



337 15562731 _at -1.1920607 5.807456 -5.124706 9.501911e-05 0.9725178
10518  201069_at -0.9944146 5.186304 -4.755419 2.026544e-04 0.9725178
22215  212910_at -0.7344058 6.799115 -4.666012 2.439610e-04 0.9725178
18198  208782_at -1.3085801 6.189398 -4.627318 2.644176e-04 0.9725178
21889  212583_at -0.7480880 2.527804 -4.574729 2.950617e-04 0.9725178
39094  229839_at -1.2300552 3.588568 -4.502213 3.433639e-04 0.9725178
27178 217892_s_at -0.7797577 4.309477 -4.429156 4.002041e-04 0.9725178

B
27523 -2.826021
36211 -2.961004
356572 -3.073210
337  -3.089519
10518 -3.196468
22215 -3.223855
18198 -3.235891
21889 -3.252427
39094 -3.275568
27178 -3.299278
> topTable(fit2.ebayes, coef=3, adjust="fdr")

ID logFC AveExpr t P.Value adj.P.Val

27523 218237_s_at 1.8621216 4.389281 11.334114 3.660698e-09 0.0002001487
36211  226955_at -1.3261325 5.079199 -7.764544 7.034561e-07 0.0192307315
33839  224579_at 1.6670962 4.121275 6.851463 3.451763e-06 0.0629083828
19290  209883_at -0.9646000 4.167576 -6.074986 1.459269e-05 0.1724894456
35813  226556_at 0.5088451 2.088021 6.034277 1.577407e-05 0.1724894456
35572  226315_at -0.6686346 4.935372 -5.849225 2.253426e-05 0.2053434888
39747 230492_s_at 0.5575371 3.755427 5.731002 2.836854e-05 0.2215785540
38732  229477_at -1.4453968 4.031406 -5.655578 3.288876e-05 0.2247741246
39944  230689_at -0.5868236 3.481043 -5.366766 5.832370e-05 0.2880939207
36563  227307_at 0.4862545 4.253737 5.355187 5.969177e-05 0.2880939207

B
27523 4.1094626
36211 2.3776628
33839 1.7015770
19290 1.0247479
35813 0.9864728
35572 0.8088671
39747 0.6922711
38732 0.6165998
39944 0.3175489
36563 0.3052517
> write.fit(fit2.ebayes, file="Affy_limma_fdr.txt", digits=8, adjust="fdr")

Now we can browse all the output in Affy_limma_fdr.txt, given the following key:

e A = mean log2 level across all arrays

o Coef = log?2 ratio

e p.value = moderated t-test raw p-value

t = t-statistic (can usually be ignored)

e FF = ANOVA F-statistic (can usually be ignored)

p.value.adj = adjusted p-value => Use this to select a threshold

e F.p.value = ANOVA p-value => If this is low, there’s something interesting in at least one comparison

e ID = probeset ID

How do you interpret the statistics? What probesets look like they’re differentially expressed? The actual study (http:
//wwu.ncbi.nlm.nih.gov/geo/query/acc. cgi?acc=GSE9103) profiled more than 4 individuals per group. Was that larger
sample size a good idea? Why?
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2.4 Creating figures from Affymetrix microarray analysis

How can we create figures like scatterplots, MA plots, or volcano plots? More importantly, why would we want to? We find
that these figures of all the data provide a good summary of the experiment and can help us put any differentially expressed
genes in the context of all genes. They may also help us choose sensible thresholds and a definition of differential expression.
We already have all the necessary data in computer memory, so we just need to access it. As with most R plots, it’s easy
to just plot the data, but optimizing the figure often means adding a lot of details to our commands. We’ll concentrate on
the all trained vs all sedentary subjects, which was the third comparison of contrast.matrix above. Since we can’t find many
differentially expressed genes using a typical FDR threshold, let’s choose to define them as any gene with a raw p-value less
than le-3. If we want, we can plot those genes in another color.

> comparison = 3
> DE = fit2.ebayes$p.value[,comparison] < le-3
> sum(DE)

[1] 89

The variable DE is a list of TRUEs (differentially expressed, with n = the output of the previous command) and FALSEs
(not DE) that we can use to subset the array. We can draw a MA (ratio-intensity) plot, which is like a scatterplot that’s
been rotated clockwise 45 degrees.

> plot(fit2.ebayes$Amean, fit2.ebayes$coeff[,comparison], main="MA plot",

+ ylab="log2 ( trained / sedentary )", xlab="mean expression level",

+ pch=20, cex=0.5)

> points(fit2.ebayes$Amean[DE], fit2.ebayes$coeff [DE,comparison], col="blue", pch=20, cex=1)
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To draw a volcano plot, we would normally use p-values after FDR correction, but these aren’t very low, so we get a more
informative figure using raw p-values.

> plot(fit2.ebayes$coeff[,comparison], -loglO(fit2.ebayes$p.valuel,comparison]), main="Volcano plot",
+ xlab="log2 ( trained / sedentary )", ylab="logl0 ( p-value )", pch=20, cex=0.5)

> points(fit2.ebayes$coeff [DE, comparison], -logl0(fit2.ebayes$p.value[DE,comparison]),

+ col="blue", pch=20, cex=1)

Volcano plot
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Nevertheless, if we want to plot FDRs, we first need to calculate them from the raw p-values in £it2.ebayes.

FDR = p.adjust(fit2.ebayes$p.value[, comparison], method="fdr")
plot(fit2.ebayes$coeff[, comparison], -loglO(FDR), main="Volcano plot",

xlab="log2 ( trained / sedentary )", ylab="logl0 ( FDR )", pch=20, cex=0.5)
points(fit2.ebayes$coeff [DE, comparison], -1loglO(FDR[DE]),

col="blue", pch=20, cex=1)

+ V + Vv V
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2.5 [Skip for now|: Getting Affymetrix probeset annotations

We can link probsets to gene symbols and other information using a variety of resources. All of these involve big downloads, so
we are going to hold off doing this as a class. One source is the Affymetrix arrays web page (http://www.affymetrix.com/
support/technical/byproduct.affx?cat=arrays). If we choose "Human Genome Arrays +” (under "3’ Gene Expression
Analysis Arrays”) and go to "Human Genome U133 Plus 2.0 Array”, we can download the file described as "HG-U133_Plus_2
Annotations, CSV format” to get a big Excel file (after registering for a free account). Another source is Bioconductor. After
installing the hgu133plus2.db package (or a comparable package for our array design), we can get a gene symbol for most
probes using the following commands:

> library(hgul33plus2.db)

> library(annotate)

> symbols = getSYMBOL (rownames (eset.values), "hgul33plus2")

> write.table(cbind(rownames (eset.values), symbols), file="hgul133plus2.symbols.txt",
+ sep="\t", row.names=F, quote=F)

3 Agilent arrays

The initial processing of the two types of arrays start out quite differently, but the statistics are quite similar. Feel free to
skip sections that appear redundant.
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3.1 Getting started with Agilent arrays
Go to the Agilent directory you just created and see what input data files are there.

> setwd("Agilent")

> dir()

[1] "Agilent_targets.txt" "GSM522121.txt" "GSM522122.txt"

[4] "GSM522123.txt" "GSM522124 . txt" "GSM522125.txt"

[7] "GSM522126.txt" "GSM522161.txt" "GSM522162.txt"
[10] "GSM522163.txt" "GSMb22164 . txt" "GSMb522165.txt"
[13] "GSM522166.txt" "GSM522211 . txt" "GSM522212.txt"
[16] "GSM522213.txt" "GSM522214 . txt" "GSM522215.txt"
[19] "GSM522216.txt" "GSM522260.txt" "GSM522261 . txt"
[22] "GSM522262.txt" "GSM522263.txt" "GSM522264 . txt"

[25] "GSM522265.txt"

The directory should include 24 2-color Agilent txt files, each containing probe-level measurements for two biological
samples. These arrays are a subset of a human study (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20881)
that examines "Colon biopsies from Crohns patients and healthy controls”. You have several txt files each from 4 groups:
healthy ileum, healthy descending colon, ileum with Crohn’s disease, and descending colon with Crohn’s disease. The
intestinal samples are always hybridized on the Cy3 (green) channel, whereas the Cy5 (red) channel is always for Universal
Human Reference RNA. Why is this design less than optimal? Running quality control on the set of arrays can be helpful,
and this will be covered in a future Hot Topics talk.

Let’s load the Bioconductor package limma (if you haven’t already). If you get an error that limma can’t be found, it’s
probably not installed. In that case you can install it by adding the Bioc repositories to the usual CRAN repository (with
the command setRepositories()) and then install the package with the command install.packages("limma"). After
installation, you still need to run the command library(limma) to access the library.

> library(limma)

We're first going to read all the array files. These are tab-delimited text files that can be opened in Excel, if you ever
wonder what they look like. Just in case we have other txt files in the directory, we're going to limit ourselves to files that
start with "GSM”. These files have lots of data, but all Bioconductor needs are the columns gMeanSignal and rMeanSignal
(for foreground) and gBGMedianSignal and rBGMedianSignal (for background).

> agilentFiles = dir(pattern = "GSM.*.txt$")
> RG = read.maimages(agilentFiles, source="agilent")

Read GSMb522121.txt
Read GSMb522122.txt
Read GSM522123.txt
Read GSM522124.txt
Read GSM522125.txt
Read GSM522126.txt
Read GSMb522161.txt
Read GSM522162.txt
Read GSM522163.txt
Read GSM522164.txt
Read GSM522165.txt
Read GSMb522166.txt
Read GSM522211.txt
Read GSM522212.txt
Read GSM522213.txt
Read GSM522214.txt
Read GSM522215.txt
Read GSMb522216.txt
Read GSM522260.txt
Read GSM522261.txt
Read GSM522262.txt
Read GSM522263.txt
Read GSMb522264.txt
Read GSM522265.txt

> gsetwd("../")
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3.2 Normalizing Agilent arrays

We want to transform the raw array data so we can make the most valid comparisons between samples. These transformations
can include steps such as background subtraction, normalization within arrays (between a red and corresponding green
channel) and between arrays. The first session of BaRC’s Microarray Analysis course (http://jura.wi.mit.edu/bio/
education/bioinfo2007/arrays/) describes normalization in more detail. For even more detail, check out the limma
User’s Guide, linked from http://www.bioconductor.org/packages/release/bioc/html/limma.html. We’re going to skip
background subtraction, as some researchers find that background subtraction adds more noise and doesn’t appear to make
replicate samples more consistent. Then we’re going to normalize within arrays (across channels) with loess (locally-weighted
scatterplot smoothing) to try to minimize dye-dependent effects, even if they’re intensity-dependent. Finally, we going to
run "Aquantile” normalization between arrays, a method which involves quantile normalization of the A values (mean probe
intensities across both channels).

> RG.nobg.0 = backgroundCorrect (RG, method="none", offset=0)
> MA.loess.0 = normalizeWithinArrays (RG.nobg.0, method="loess")
> MA.loess.q.0 = normalizeBetweenArrays(MA.loess.0, method="Aquantile")

It may be helpful to know that this process turns a RGList (with an array described in terms of Red and Green intensities)
into a MAList (with an array described in terms of M (log2(Cy5/Cy3)) and A (mean of Cy5 and Cy3 intensities)). These
data structures include each several matrices combined together, and if you ever want to know the names of each underlying
variable, use the names () command. Once you know the underlying variables, it’s easy to access them.

> names (RG.nobg.0)
[1] ngn ng "targets" "genes“ "source"
> RG.nobg.0%$R[1:5,1:5]

GSMb522121 GSM522122 GSM522123 GSM522124 GSM522125
[1,] 153.50000 140.46670 100.1111 117.57140 111.70370
[2,] 69.62069 63.82759 62.6129 73.86207 58.72414
[3,] 126.42860 148.36000 117.6786 111.03700 124.32140
[4,] 120.18520 142.71880 119.0345 104.38710 114.73330
[5,1 204.00000 202.41380 136.8929 141.96550 152.85190

> names (MA.loess.0)
[1] "targets" ngenesu "source" " npn
> MA.loess.O0$M[1:5,1:5]

GSM522121  GSM522122  GSM522123 GSM522124 GSM522125
[1,] -4.68418366 -4.39969784 -4.65798271 -4.2325219 -5.188262292
[2,] -0.06994817 -0.05703049 0.01222401 -0.2264735 -0.005352078
[3,] -0.05570601 0.13241709 0.08152189 -0.1469588 0.132393704
[4,] -0.28353851 -0.06487891 0.06440928 -0.2402458 -0.045137713
[5,] -0.46355283 -0.11068345 -0.16382304 -0.4892521 -0.275981192

We can create a file with normalized data from all arrays, which can be useful for creating a heatmap or simply checking out
the data from each array (before future summarization by 1imma). names(MA.loess.q.0) contains different types of data, but
let’s just print the M values (log2 fold changes) for now, together with probe IDs and gene symbols from MA.loess.q.0$genes.

> log2.ratios = round(MA.loess.q.0$M, 4)

> probe.info = MA.loess.q.0$genes[,c("ProbeName", "GeneName") ]

> write.table(cbind(probe.info, log2.ratios), file="Agilent_log2_ratios.txt",
+ sep="\t", row.names=F, quote=F)

3.3 Identifying differentially expressed probesets from Agilent arrays

We're going to use the normalized M and A values (a MAList) for differential expression analysis. Now we have to describe
our experimental design to the computer. The first step is to read a tab-delimited file including columns for FileName (of
each txt file) and target (a name of the sample used for the hybridization) for each Cy5 and Cy3 channel of each array. You
should have a file called Agilent_targets.txt in your current directory (or download it from the Hot Topics page). Read
the file and then use model.matrix() to convert the targets matrix into a design matrix. To do this we choose "UHR” as
our refence sample.
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> targets = read.delim("Agilent/Agilent_targets.txt")
> design = modelMatrix(targets, ref="UHR")

Found unique target names:
crohns_descending_colon crohns_terminal_ileum healthy_descending_colon healthy_terminal_ileum UHR

> rownames (design) = agilentFiles
> head(design)

crohns_descending_colon crohns_terminal_ileum

GSM522121.txt 0 0
GSM522122.txt 0 0
GSM522123.txt 0 0
GSM522124 . txt 0 0
GSM522125.txt 0 0
GSM522126.txt 0 0
healthy_descending_colon healthy_terminal_ileum
GSM522121 . txt 0 -1
GSM522122. txt 0 -1
GSM522123.txt 0 -1
GSM522124 . txt 0 -1
GSM522125.txt 0 -1
GSM522126.txt 0 -1

The design table has a ”1” if the non-reference sample is on the Cy5 channel or a ”-1” if it’s on the Cy3 channel. Our
experiment has all intestinal samples on the Cy3 channel, so we only see the latter.

While we’re making matrices, let’s make a contrast matrix, which describes the comparisons we’d like to make. Since
we're starting with log-transformed ratios, subtraction is really division (of untransformed ratios). We can make a list of all
desired comparisons, optionally naming any of them. then let’s look at our output to be sure it makes sense.

> contrast.matrix = makeContrasts(

+ Colon = crohns_descending_colon - healthy_descending_colon,

+ Ileum = crohns_terminal_ileum - healthy_terminal_ileum,

+ CrohnsVsHealthy = ((crohns_descending_colon - healthy_descending_colon) +

+ (crohns_terminal_ileum - healthy_terminal_ileum))/2,

+ levels=design)

> contrast.matrix

Contrasts

Levels Colon Ileum CrohnsVsHealthy
crohns_descending_colon 1 0 0.5
crohns_terminal_ileum 0 1 0.5
healthy_descending_colon -1 0 -0.5
healthy_terminal_ileum 0 -1 -0.5

This design is just like we set up for the Affymetrix experiment above. Many other designs are possible, especially for more
complex experiments, and the limma User’s Guide has examples for common designs. Often multiple designs are possible,
and your choice is worth some careful thought.

Now we’re set to run the statistics we want. This is done in three steps:

e Fit linear model for each gene (probeset) given an expression matrix (with 1mFit)

e Given a linear model fit to microarray data, compute estimated coefficients and standard errors for a given set of
contrasts (with contrasts.fit)

e Given a series of related parameter estimates and standard errors, compute moderated t-statistics, moderated F-
statistics, and log-odds of differential expression by empirical Bayes shrinkage of the standard errors towards a common
value (with eBayes)

> fit = ImFit (MA.loess.q.0, design)
> fit2 = contrasts.fit(fit, contrast.matrix)
> fit2.ebayes = eBayes(fit2)
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At this point we can look at the most differentially expressed probesets for each comparison or simply output all the
data and browse it in Excel. For the former, topTable prints the top genes for a comparison (of number given by coef) and
corrects/adjusts for multiple hypothesis testing (such as with False Discovery Rate). To reduce the annotation information
in fit2.ebayes, we’re going to drop everything but ProbeName and GeneName (symbol).

> fit2.ebayes$genes = fit2.ebayes$genes[,c("ProbeName", "GeneName")]
> topTable(fit2.ebayes, coef=1, adjust="fdr")

ProbeName GeneName logFC AveExpr t P.Value
3047  A_23_P27285 MPPE1 -0.4397415 8.610479 -5.028687 5.056127e-05
5998 A_23_P212870 MADH1 -0.3450835 8.664701 -4.584170 1.481566e-04
10996 A_23_P43476 VLDLR 0.3291409 7.395841 4.498770 1.823116e-04
4655  A_24_P21447 SURF6 0.4346200 7.214387 4.481538 1.901090e-04
36429 A_23_P63847  SUPV3L1 0.5026690 8.408700 4.367369 2.509333e-04
231568 A_24_P934135 AK092791 -0.5061809 7.655851 -4.210624 3.673887e-04
35952 A_32_P76441 I_1959765 0.2418376 8.743558 4.033449 5.651055e-04
15193 A_23_P48897 CPR8 -0.3333778 8.242222 -4.000634 6.119635e-04
42015 (+)eQC-38 eQC 0.1352048 6.005968 3.955003 6.836040e-04
24075 A_24_P105283 SFPQ 0.4181653 7.970554 3.905796 7.702084e-04
adj.P.Val B
3047 0.9960887 -0.2730818
5998 0.9960887 -0.7801145
10996 0.9960887 -0.8805097
4655 0.9960887 -0.9008758
36429 0.9960887 -1.0366897
23158 0.9960887 -1.2255046
35952 0.9960887 -1.4418612
15193 0.9960887 -1.4822373
42015 0.9960887 -1.5385264
24075 0.9960887 -1.5994041

> topTable(fit2.ebayes, coef=2, adjust="fdr")

ProbeName GeneName logFC AveExpr t P.Value
42308 A_23_P10025 NELL2 1.1530383 6.940010 7.899458 7.813107e-08
21568 A_32_P113584 AB011102 0.4102003 7.554871 7.304647 2.745415e-07
33578 A_23_P155837 I_958050 0.3811986 6.697331 7.129611 4.009836e-07
17984 A_32_P95541 A_32_BS95541 0.6015552 7.620763 7.037055 4.907193e-07
22333 A_23_P434430 ZNF439 0.5847760 7.195110 6.381807 2.116102e-06
20986 A_23_P126075 KCNK1 -1.4159275 9.119713 -6.268206 2.741301e-06
42503  A_32_P9816 AI590869 0.2731203 6.608594 5.947805 5.735841e-06
26788 A_23_P154379 NAT8 1.5397269 8.605989 5.914063 6.203835e-06
30138 A_23_P155835 I_958050 0.3971465 8.745790 5.805771 7.986317e-06
9214 A_23_P141394 FLJ10055 -0.9852119 9.593362 -5.737895 9.362092e-06
adj.P.Val B
42308 0.003432376 7.412342
21568 0.005389447 6.393650
33578 0.005389447 6.082326
17984 0.005389447 5.915592
22333 0.018592495 4.694136
20986 0.020071346 4.475245
42503 0.034067584 3.847113
26788 0.034067584 3.780067
30138 0.037175578 3.563780
9214 0.037175578 3.427369
> topTable(fit2.ebayes, coef=3, adjust="fdr")
ProbeName GeneName logFC AveExpr t P.Value
42308 A_23_P10025 NELL2 0.5904919 6.940010 5.721139 9.737441e-06
42015 (+)eQC-38 eQC 0.1377022 6.005968 5.696533 1.031662e-05
36295 A_24_P935902 I_3549574 0.1890874 6.450098 5.541686 1.486118e-05
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33578 A_23_P155837 I_958050 0.2064238 6.697331 5.459958 1.803521e-05

39458 A_24_P129834 TPH2 0.1485352 6.064550 5.278675 2.776652e—05

24048  (-)3xSLvl NegativeControl -0.1221310 6.019019 -5.226331 3.146696e-05

30541 A_24_P911259 AK023557 -0.4867591 7.752537 -5.185566 3.469230e-05

35952 A_32_P76441 1_1959765 0.2184358 8.743558 5.152187 3.758157e-05

14653  (-)3xSLv1 NegativeControl -0.1284890 6.020543 -5.130521 3.958627e-05

38608 A_24_P540560 XM_293353 0.1531962 6.657913 5.109038 4.168100e-05
adj.P.Val B

42308 0.1431994 3.117274

42015 0.1431994 3.071099

36295 0.1431994 2.778459

33578 0.1431994 2.622616

39458 0.1431994 2.273686

24048 0.1431994 2.172140

30541 0.1431994 2.092822

35952 0.1431994 2.027722

14653 0.1431994 1.985396

38608 0.1431994 1.943373

> write.fit(fit2.ebayes, file="Agilent_limma_fdr.txt", digits=8, adjust="fdr")

Note that these arrays include gene annotation in the actual scanner files (which isn’t the case for Affymetrix arrays).
Now we can browse all the output in Agilent_limma_fdr.txt, given the following key:

e A = mean log2 level across all arrays

e Coef = log2 ratio

t = t-statistic (can usually be ignored)

e p.value = moderated t-test raw p-value

p-value.adj = adjusted p-value => Use this to select a threshold

F = ANOVA F-statistic (can usually be ignored)

F.p.value = ANOVA p-value => If this is low, there’s something interesting in at least one comparison

Genes.ProbeName = Probe ID

e Genes.GeneName = Gene symbol (from original array file (so these may be out of date))

How do we interpret the statistics? What probesets look like they’re differentially expressed? Does Crohn’s disease
affect the descending colon (towards the end of the large intestine) in a similar manner to the ileum (the last section of
the small intestine)? The actual study (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20881) profiled more
than these individuals per group. Note that different groups have differing numbers of samples. Why was the experiment
designed in this way? Are there any drawbacks to this design?

3.4 Creating figures from Agilent microarray analysis

How can we create figures like scatterplots, MA plots, or volcano plots? More importantly, why would we want to? We find
that these figures of all the data provide a good summary of the experiment and can help us put any differentially expressed
genes in the perspective of all genes. They may also help us choose sensible thresholds and a definition of differential
expression. We already have all the necessary data in computer memory, so we just need to access it. As with most R
plots, it’s easy to just plot the data, but optimizing the figure often means adding a lot of details to our commands. We’ll
concentrate on all Crohn’s vs all healthy subjects, which was the third comparison of contrast.matrix above. Since we can’t
find many differentially expressed genes using a typical FDR threshold, let’s choose to define them as any gene with a raw
p-value less than le-3. If we want, we can plot those genes in another color.

> comparison = 3
> DE = fit2.ebayes$p.value[,comparison] < le-3
> sum(DE)

[1] 204
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The variable DE is a list of TRUESs (differentially expressed, with n = the output of the previous command) and FALSEs
(not DE) that we can use to subset the array. Let’s draw a MA (ratio-intensity) plot, which is like a scatterplot that’s been
rotated clockwise 45 degrees.

> plot(fit2.ebayes$Amean, fit2.ebayes$coeff[,comparison], main="MA plot",

+ ylab="log2 ( Crohn's / healthy )", xlab="mean expression level",

+ pch=20, cex=0.5)

> points(fit2.ebayes$Amean[DE], fit2.ebayes$coeff[DE,comparison], col="blue", pch=20, cex=1)

MA plot
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To draw a volcano plot, we would normally use p-values with the FDR correction, but these aren’t very low, so we get a
more interesting figure using raw p-values.

> plot(fit2.ebayes$coeff [, comparison], -loglO(fit2.ebayes$p.valuel,comparison]), main="Volcano plot",
+ xlab="log2 ( Crohn's / healthy )", ylab="logl0O ( p-value )", pch=20, cex=0.5)

> points(fit2.ebayes$coeff [DE, comparison], -loglO(fit2.ebayes$p.value[DE, comparison]),

+ col="blue", pch=20, cex=1)
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If we want to plot FDRs, we first need to calculate them from the raw p-values in £it2.ebayes.

FDR = p.adjust(fit2.ebayes$p.valuel[, comparison], method="fdr")
plot (fit2.ebayes$coeff[, comparison], -loglO(FDR), main="Volcano plot",

xlab="log2 ( trained / sedentary )", ylab="logl0O ( FDR )", pch=20, cex=0.5)
points(fit2.ebayes$coeff [DE, comparison], -1oglO(FDR[DE]),

col="blue", pch=20, cex=1)
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How do these plots compare to those for the Affymetrix study? Every microarray experiment has a particular level of
variability within and between samples that influences the optimal sample size and, together with one’s choice of statistical
threhsolds, the relative numbers of false positives and false negatives from the analysis.

4 RNA-Seq

4.1 Getting started with RNNA-Seq
Go to the RNASeq directory you created and see what input data files are there.

> setwd ("RNASeq")
> dir()

[1] "Brain_UHR_duplicates_counts.txt"

The main file is a matrix of counts derived from a subset of an RNA-Seq experiment performed by the MicroArray
Quality Control (MAQC) project, which has expanded to include high-throughput sequencing. This study looked at RNA
levels in the brain (from Ambion’s human brain reference) and the Universal Human Reference (UHR, from Stratagene).
The original short reads came from http://www.ncbi.nlm.nih.gov/sra?term=SRA010153) of which we analyzed duplicate
samples from each RNA source. Note that this experiment is atypical in that brain and UHR are much more different
than most biomedically relevant comparisons. RNA-Seq data can be fully processed in R, but we prefer to use stand-alone
applications for short-read mapping and counting. For each samples, we started our analysis by mapping with tophat,
the spliced-read mapper (http://tophat.cbcb.umd.edu/) and counting reads overlapping genes with htseq-count (http:
//www-huber .embl .de/users/anders/HTSeq/doc/count . html)) using commands like these:
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e bsub tophat -o brain_1 -solexa-quals -G /nfs/genomes/human_gp_feb_09/gtf/hgl9.refgene.gtf
/nfs/genomes/human_gp_feb_09_no_random/bowtie/hgl9 SRR037452.fastq

e bsub samtools view -h -o brain_l/accepted_hits.sam brain_1/accepted_hits.bam

e bsub "htseq-count brain_1/accepted_hits.sam /nfs/genomes/human_gp_feb_09/gtf/hgl9.refgene.gtf
> brain_1_gtf.htseq-count.out"

Output of this set includes short read counts (not RPKM values) for each gene ID. After running this set of commands

on all of our four samples, we merged them together into one matrix, with gene symbols in the first column.

4.2 Preprocessing RNA-Seq counts

Let’s read the matrix, using the first column as row names, and see what our matrix looks like. After we read the file, we’ll
go up one level to the starting directory

> counts = read.delim("Brain_UHR_duplicates_counts.txt", row.names=1)
> setwd("../")
> nrow(counts)

[1] 22131
> head(counts)

brain_1 brain_2 UHR_1 UHR_2

A1BG 46 64 95 113
A1CF 0 0 59 61
A2BP1 1011 1042 4 5
A21D1 9 12 14 22
A2M 872 966 3938 4127
A2ML1 14 14 2 2

We have column headers (the first row of the file) but have to tell R which columns are replicates (i.e., name our biological
groups). We can use the rep() command, which repeats a value a given number of times.

> groups = c(rep("brain",2), rep("UHR", 2))
> groups

[1] "brain" "brain" "UHR" "UHR"

We could use the current counts matrix for differential expression analysis, but at BaRC we found a couple of additional
steps that can be helpful. First, we remove all genes that have no counts in any sample. These can’t possibly be interesting for
our analysis, and removing them will at least slightly minimize the False Discovery Rate correction of our p-values. Second,
we add pseudocounts (at least 1 count) to all positions in the matrix. This has the obvious effect of preventing any division
by 0 (when we calculate fold changes) and is also similar to an offset for array intensities, which reduces the noise in genes
with low expression. For our sample analysis we’ll add 1 pseudocount. To calculate the total counts per gene, we use the
apply O function, which applies a function (such as sum()) across all rows (if the second argument is 1) or across all columns
(if the second argument is 2).

sum.by.gene = apply(counts, 1, sum)
counts.noOgenes = counts[sum.by.gene > 0,]
counts.noOgenes.offset.1 = counts.noOgenes + 1
nrow(counts.noOgenes.offset.1)

vV VvV Vv VvV

[1] 19069
> head(counts.noOgenes.offset.1)

brain_1 brain_2 UHR_1 UHR_2

A1BG a7 65 96 114
A1CF 1 1 60 62
A2BP1 1012 1043 5 6
A21D1 10 13 15 23
A2M 873 967 3939 4128
A2ML1 15 15 3 3
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Note how the output from the last command compares to the output from head(counts), and how the number of genes
(from nrow()) compare between the two matrices. Also note that we haven’t yet normalized between samples, so one sample
may include many more reads than another. Most RNA-Seq statistics packages are aware of this and expect input data to
be unnormalized.

4.3 Identifying differentially expressed genes from RNA-Seq

Now we’re going to need an R package to help us identify the differentially expressed genes. In BaRC we’ve had success with
three packages that assay for differential expression: edgeR, DESeq, and baySeq. edgeR and DESeq are quite similar, and
we’ve decided to use sample code for DESeq.

Let’s load the Bioconductor package DESeq which includes many of the commands we’ll be using.

> library(DESeq)
locfit 1.5-6 2010-01-20

If you get an error that DESeq can’t be found, it’s probably not installed. In that case you can install it by adding
the Bioc repositories to the usual CRAN repository (with the command setRepositories()) and then install the package
with a command like install.packages("DESeq"). After installation, you still need to run the command library (DESeq)
to access the library. We can get lots more theoretical details about DESeq from the publication (http://www.ncbi.nlm.
nih.gov/pubmed/20979621) and practical details from the vignette (http://www.bioconductor.org/packages/2.8/bioc/
vignettes/DESeq/inst/doc/DESeq.pdf| or the R command vignette ("DESeq"))

We start by creating a CountDataSet, which is DESeq’s terminology for a data frame of RNA-Seq counts and other
associated information.

> cds = newCountDataSet (counts.noOgenes.offset.1, groups)

We want to calculate a normalization factor to account for each sample having a different number of reads. The most
obvious way of doing this is to calculate this from the total number of mapped reads that are associated with genes (so the
total of each column of our counts matrix). This method can be unduly influenced by a few very-highly-expressed or very-
differentially-expressed genes, and DESeq instead recommends a method called estimateSizeFactors() that uses geometric
means. We'll look at how the scaling factors from each method differs for our data.

> # Naive way
> sum.by.sample = apply(counts.noOgenes.offset.1, 2, sum)
> sum.by.sample

brain_1 brain_2 UHR_1 UHR_2
4901896 5421676 5748016 5993249

> sum.by.sample/mean (sum.by.sample)

brain_1 brain_2 UHR_1 UHR_2
0.8886349 0.9828626 1.0420228 1.0864796

> # DESeq recommendation
> cds = estimateSizeFactors(cds)
> sizeFactors(cds)

brain_1 brain_2 UHR_1 UHR_2
0.7994247 0.8495221 1.1892071 1.2366183

A key step of assaying for differential expression with DESeq is to use the actual counts data to calculate the variability
(variance) for each gene.

> cds = estimateVarianceFunctions (cds)

Once we have the variability for each gene, we can figure out how confident we are that each gene is differentially expressed.
As with microarrays, the same major caveat applies: we keep saying “differential expression” but really we mean “differential
RNA abundance”. We have no way of knowing if changing RNA levels are due to changes in transcription, RNA degradation,
regulation by miRNAs, and/or some other mechanism. In any case, DESeq uses a method based on the negative binomial
distribution. Since we may have an experiment that compares multiple different samples, we need to identify which two
samples we want to compare, with the reference sample first (since nbinomTest (cds, "A", "B") calculates log2 ratios for

B/A).
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> results = nbinomTest(cds, "UHR", "brain")

We can take a look at the results of our statistical analysis. We can also print the output for all genes, together with our
preprocessed, normalized counts for each sample. To get the latter, we divide our preprocessed matrix by the scaling factors.

> head(results)

id baseMean baseMeanA  baseMeanB foldChange log2FoldChange
1 AIBG 77.05471 86.456474 67.652940 0.78250867 -0.3538214
2 A1ICF 25.75464 50.295258 1.214016 0.02413778 -5.3725631
3 A2BP1 625.67894 4.528212 1246.829674 275.34702721 8.1051072
4 A21D1 14.75607 15.606278 13.905858 0.89104256 -0.1664337
5  A2M 2220.18727 3325.213415 1115.161130 0.33536528 -1.5761948
6 A2ML1 10.34228 2.474330 18.210239 7.35966452 2.8796400

pval padj resVarA resVarB

1 5.895285e-02 8.199051e-02 0.4520037072 0.9386538091
2 5.800018e-24 2.245696e-23 0.000605658216 0.0009230316
3 0.000000e+00 0.000000e+00 0.0018549887 0.2125819729
4 6.406008e-01 7.130292e-01 0.6958712267 0.1155807502
5 7.136553e-76 6.285770e-75 0.0478036558 0.1491655872
6 1.976859e-07 4.270617e-07 0.0011459467 0.0138454756
> counts.normalized = round(t(t(counts(cds))/sizeFactors(cds)), 2)
> write.table(cbind(results, counts.normalized), file="RNA-Seq_DESeq_output.txt",
+ sep="\t", quote=F, row.names=F)

We can browse all the output in RNA-Seq_DESeq_output.txt, given the following key. Unless indicated, all summary
values are normalized (scaled to account for different numbers of reads in each sample), with groups labeled as A or B as
indicated by the command nbinomTest(cds, "A", "B")

e id = Gene identifier

e baseMean = Mean counts across all samples

e baseMeanA = Mean counts across replicates of first sample

e baseMeanB = Mean counts across replicates of second sample

e foldChange = baseMeanB /baseMeanA

e log2FoldChange = log2 (foldChange)

e pval = raw p-value for statistical test asking, ”Is baseMeanA = baseMeanB?”

e padj = False Discovery Rate correction for p-values (Use this when determining threshold)

e resVarA = measure of the variance of this gene in group A. If this number is very high, the hit may be a false positive.
e resVarB = [same for group A]

e counts for each each input sample (multiple columns; preprocessed and normalized)

A few comments may help explain some of these results. First, the groups of brain and a human reference RNA are much
more different than most groups that one would typically compare in an experiment. Second, the duplicate samples aren’t
biological replicates because they both came from the same commericial RNA source. Biological replicates would be expected
to show more variability than we see here. For both reasons we see a huge number of genes that appear to be differentially
expressed, which is not the usual result of a RNA-Seq experiment.

4.4 Creating figures from RNA-Seq analysis

We can draw figures that are similar to those we’ve done for microarrays.
We have easy access to actual levels for each group so can do a typical scatterplot. For all of these figures, par (pty="s")
forces the figure to be square, which makes the figures easier to interpret.
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> par(pty=”s”)
> plot(log2(results$baseMeand), log2(results$baseMeanB), main="Scatterplot",

+ x1im=c(0,15), ylim=c(0,15), xlab="UHR", ylab="brain", pch=20, cex=0.5)
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A MA plot (like the figure above, but rotated 45 degrees) is just as easy.
> par(pty=llsﬂ)

> plot(log2(results$baseMean), results$log2FoldChange, main="MA plot",
+ ylab="log2(brain/UHR)", xlab="mean counts", pch=20, cex=0.5, x1im=c(0,15))
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A volcano plot highlights the very low FDR p-values from this analysis.
> par(pty="s”)

> plot(results$log2FoldChange, -logl0(results$padj), main="Volcano plot",
+ xlab="log2(brain/UHR)", ylab="1loglO(FDR)", pch=20, cex=0.5)
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Volcano plot
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The confidence associated with the actual FDR p-values is hard to believe, but the FDR rank of genes can help us choose
which we think really are differentially expressed.
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