Visualization:
Principles & Software



Good Visualization?
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FIG. 4. ISG15 promoter activity mimics endogenous ISG15 mRNA Novel . flankingto a
regulation by p53, dsRNA, and virus. Cells (6 X 10° HCT 116) were 24% =% known gene
seeded in 32-mm plates and allowed to attach overnight. Cells were ® 36%

transfected with 500 ng of pGL3/ISG15-Luc, 50 ng of pRL null (Pro-
mega), and 450 ng of pcDNA3 for carrier DNA by using Lipo-
fectamine Plus (Life Technologies) following the manufacturer’s
instructions. Twenty-four hours posttransfection, the medium was as-
pirated and replaced with medium containing either 1,000 U of IFN-
a/ml, 50 pg of dsSRNA/mI, or Sendai virus (multiplicity of infection,
10). Cells were incubated for 12 h and then lysed, and luciferase assays
were performed. Luciferase activity was assessed on 20 pl of each
lysate as directed by the supplier (Dual Luciferase Kit, Promega) using
a TD 20720 luminometer (Turner Designs). Luciferase activity is pre-
sented as the ratio of firefly activity to renilla activity to control for
differences in transfection efficiency. Each data point is the mean of
triplicate samples * the standard error; the data presented are repre-
sentative of four independent experiments.

866 Total TFBS Regions

Cawley S, et al. (2004) Unbiased mapping of transcription factor binding sites along human
chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116:499-509, Figure 1

Hummer BT, Li XL, Hassel BA (2001) Role for p53 in gene
induction by double-stranded RNA.J Virol 75:7774-7777, Figure 4

https://www.biostat.wisc.edu/~kbroman/topten_worstgraphs/



Good Visualization?
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(a-c) Sample 1Ds were sorted for each semicircle (right, predicted genotypes; left, observed genotypes; numbers on the
outside of the semicircles represent indexed sample numbers). Results are shown for experiments in which RYGB liver was
used as the training set for HLC liver (a), HLC liver was used as the training set for RYGB liver (b) and RYGB adipose was
used as the training set for HLC liver (c). In the case of a correct pairing (with adjusted minimum P;j of <1 x 1075, the
connection between the semicircles was a straight line passing the circle center (blue lines). In the case that no match for a
given individual was identified, no line existed: for example, tick A in a-c. The blue curves outside of the right semicircles
denote adjusted minimum P;j (-logyp transformed) for matching predicted genotype vectors to observed genotype vectors.
For convenience, this value was capped at 16. If the value was <5, the curve is shown in red, indicating lack of statistical
support for any match. (d) Matching was performed in the HLC liver set to which RNA-DNA mispairing and orphan samples
had been added. In the case of a mispairing detected at adjusted minimum P;; of <1 x 103, the line connecting the
semicircles will not be straight (red connections). The predicted genotype of subject 31 (tick A) best matches the observed
genotype of subject 98 (tick D). There was no line connecting the observed genotype of subject 31 (tick C). In the case of
orphan RNA (for example, subject 137), there was no connection between the predicted genotype (tick B) and observed

genotype (tick E). The green curve outside the right semicircle show adjusted -logig (P ;).

Bayesian method to predict individual SNP genotypes from
gene expression data
Schadt, E.E., et al. Nature (2012)



Good Visualization?
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Mutual exclusivity modules are represented by their gene components and connected to reflect their activity in distinct
pathways. For each gene, the frequency of alteration in basal-like (right box) and non-basal (left box) is reported. Next to
each module is a fingerprint indicating what specific alteration is observed for each gene (row) in each sample (column). a,
MEMo identified several overlapping modules that recapitulate the RTK-PI(3)K and p38-JNKI signalling pathways and
whose core was the top-scoring module. b, MEMo identified alterations to TP53 signalling as occurring within a statistically
significant mutually exclusive trend. ¢, A basal-like only MEMo analysis identified one module that included ATM mutations,
defects at BRCAI and BRCAZ2, and deregulation of the RBI pathway. A gene expression heat map is below the fingerprint to

show expression levels.

TCGA
Nature (2012)



Good Visualization?
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Number of interactions

The relation between the number of protein-protein interactions (i) in which a yeast
protein participates and that protein's evolutionary rate, as estimated by the
evolutionary distance (K) to the protein's well-conserved ortholog in the nematode
C. elegans.

Evolutionary Rate in the Protein Interaction Network
Fraser, H.B., et al. Science (2002)

http://jasonya.com/wp/science-figures-we-could-do-without/



vizbi.org

Visualizing Biological Data (VizBi)

Assembly and visualizati

Samuel Hertig, Graham T. Johnson,

Goals and challenges
- Construct an in-silico model of immature HIV
- In contrast to the model of mature HIV', homology
modeling of the polyproteins Gag and GagPol is
required before they can be incorporated in an
immature HIV model

- Establish a pipeline to facilitate mesoscale
model generation
- Create an online platform for visualization,
hypothesis generation, and outreach?
Reverse

Transcriptase

Methods overview

1) MultiDomain Assembler’ (MDA) for homology modeling of
Gag and GagPol polyproteins

2) Create mesoscale models with cellPACK¢
3) Build an online viewer for cellPACK models

Online viewer for cellPACK models

- A pipeline for building, visualizing, consolidating and
sharing mesoscale models (not just for HIV)

- Ideally: platform-independent, running in a
web-browser, no plug-ins required, easy-to-use
interface
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- Javascript library three.js
(threejs.org) to display
Collada models in 3D with
WebGL

- Performance issues! (see
live demo...) Suggestions
welcome!
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Gag

The viral polyproteins Gag and GagPol govern the assembly of
HIV, and are composed of multiple domains connected by
flexible linkers. These models were created using MDA with
additional distance restraints, for example obtained by EM
studies of the immature virion’.

Best Poster (2015)

Thomas D. G

on of immature HIV

Goddard, Thomas E. Ferrin

MultiDomain Assembler

- Facilitates homology modeling of
large multidomain proteins

- Embedded in UCSF Chimera®, a
widely used open-source molecular
graphics software

- MDA automates the task of
template searching,
visualization

and selection
followed by
multidomain
model generation
using Modeller*

- Optimizes structural
coverage for a target sequence
even when hundreds of high-scoring
hits are available for one domain and
only few low-scoring ones for another

- Arranges non-overlapping templates to

minimize steric collisions and knots during
homology modeling calculations

a f target mult Gog)
N Ty ¢
~
MultiDomain Assembler
1. BLAST search > 2. Filter hits 3. Load structures > 4. Select templates
== @0 O®@
= v
5. Homology
modeling
SO000
-
OO 000¢
i 9. Gag)

- MDA's unique capability to display, automatically align and
color all of the homologs with known structure for a target
protein in the same 3D space for simultaneous visual analysis
provides a useful summary of current structural knowledge
beyond the task of homology modeling (see live demo...)
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Ascombe's Quartet
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Visualization

* Common Misconceptions
»Goal is to impress (wow!)
»Visualization == Imaging
» Easy

* Goals
»Record: raw data
» Analyze: reveal patterns or trends
»Communicate

O'Donoghue, S.I, et al. Visualization of Biomedical Data. Annual Rev of Biomed Data Sci 1:275-304 (2018)



Visualization:
Principles

* How do you encode information/data?

o Marks: basic geometric elements
e.g. circle, square

o Channels: control the appearance of the marks

e.g. co

or, size, orientation/direction, etc.

Marks: lines
Channels: length (of the lines)

eeeeeeeeeeeeeeeeeeeeeeeee



Visualization:
Principles

Quantitative/ordered data
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Additional visual channels [unranked): connection, containment/enclosure, crispness/resolution, flicker,
line endings, line pattemn, line weight, numernasity, text, texture, transparency, weight/boldness.

O'Donoghue, S.I, et al. Visualization of Biomedical Data. Annual Rev of Biomed Data Sci 1:275-304 (2018)




Visualization:
Color

* Hue
e Saturation

* Luminescence or Brightness
(Value)

https://en.wikipedia.org/wiki/HSL_and_HSV



Visualization:
Interaction

* Overview first, Zoom/Filter for details (e.g.
Google Maps, IGV, 'hairball' network diagram,
3D protein viewer)

e Alternative: Details first, overview last

* Animation: Use to show change, especially
over time. Often used ineffectively!



Visualization:
Tufte's Principles
* Graphical integrity: maintain credibility
* Maximize data-ink ratio: avoid "chart junk”

THE SHRINKING FAMILY DoCTOR
In California

8,023 Doctors

L.A. Times (Aug 5, 1979)

Tufte, E., The Visual Display of Quantitative Information, 2" Ed. (2001)



Visualization:
Communication

ALY ety Beembe 0. 208 e e Vo Pt sy, Secemben 11 08

Iraqg’s bloody toll Iraq: Deaths on the Decline
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Andy Cotgreave blog, Tableau



Visualization:
Graphical Abstracts
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Table 1. Comparison between different types of graphical representations

Type of visual display Utility and pros

Cons

Graphical representation to illustrate data on overall survival or progression-free survival

Kaplan-Meier curves Allows estimation of survival and comparison of two

treatment groups based on selected categories

Graphical representations of treatment effect
Forest plots Helps determine behaviors of different subgroups
within a larger dataset
Funnel plots Scatter plots of the effect estimates that can give an in-
dication of heterogeneity
Indication of clusters within the data that highlight the
variation in distribution

Violin plots

Graphical representations of tumor response

Waterfall plots Summarizes the typical response size and the fraction
of patients experiencing benefit. Reveals interpatient
heterogeneity of response

Spider plots Allows visualization of data points across time rather

than at a specified time point

Swimmer plots Tumor response and timeframe of response displayed

Graphical representations to illustrate cancer genotypes and phenotypes

Heat maps Allows complex data to be grouped according to thou-
sands of individual data points, thereby allowing pat-
terns within the data to be visualized

Allows visualizing complex genome data in one plot, al-
lows visualization of the interaction between geno-
mic regions in addition to genome gains/losses

Circos plots

Graphical representations to illustrate connectedness and relatedness in cancer

Subway diagrams Visual simplification of successive steps in a complex
pathway

The vertex represents each factor that is being studied,
and size of the vertex is proportional to the efficacy of
the factor

Network analysis graphs

Univariate analysis, which may be confounded by cen-
soring differences between groups

Subject to error if there are only small number of data
points within subgroup analysis resulting in false
interpretation

Shape of the plot is dependent on number of patients
recruited in different risk groups

Does not allow easy comparison across different
datasets

Only shows one measurement in time, and tumor re-
sponse size may not represent actual patient benefit
in terms of overall survival or progression-free
survival

Does not allow for formal statistical inference, difficult
to interpret if large number of data points

May become cluttered and uninformative if too many
subjects are included or too many variables are
included

Clustering is based on multiple data points, which may
dilute the effects of individual data points such that it
is lost within the volume of data

Highly complex plots without ability to focus on specific
genomic regions

Does not quantify impact or efficacy of each step in the
pathway

Unable to quantify degree of effect other than via thick-
ness of the links drawn in the diagram

Chia, P.L, et al. Current and Evolving Methods to Visualize Biological Data in Cancer Research J Nat Cancer Inst 108:8 (2016)



a Data matrix

X

0.768
0.768
0.700
0.700
0612
0612
0511
0511
0433
0433
0.390
0.380
0.380
0316
0279
0.248
0.158
0125
0125
0092
0092
0.068

O'Donoghue, S.I, et al. Visualization of Biomedical Data. Annual Rev of Biomed Data Sci 1:275-304 (2018)
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Genomic Features and Interactions

a Human chromosome 2
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O'Donoghue, S.1, et al. Visualization of Biomedical Data. Annual Rev of Biomed Data Sci 1:275-304 (2018)
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Heatmap vs Curvemap
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Muzner, T. Vizbi 2011 Workshop of Visualizing Biological Data




Heatmap:

Color Perception
b C

Figure 1 | Perception of color can vary. (a,b) The same color can look different
(a), and different colors can appear to be nearly the same by changing the
background color (b)1. (c) The rectangles in the heat map indicated by the
asterisks (*) are the same color but appear to be different.

Wong, B. Color Coding Nature Methods 7:8 (2010)



Hierarchies

CARTESIAN SYSTEMS
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http://phylonetworks.blogspot.com/2014/03/trees-treemaps-and-networks.html



Hierarchies:
Sunburst Diagram Examples

Voltage-gated ion channel
Anion channel
Ligand-gated ion channel

Transfer/carrier protein

HSP90 family
HSP70 family

Carbohydrate transporter

Actin famil | Amino acid transporter

X - _y ATP-binding cassette (ABC) transporter re e I I l a
Microtubule binding motor protein Translation factor _ transaminase

Guanyl-nucleotide exchange factor Reverse transcriptase

Nucleotidyltransferase

DNA methyltransferase

REVIGO Gene Ontology treemap

G-protein modulator
Protease inhibitor

DNA helicase
Helicase

Protein phosphatase
Phosphodiesterase
Aspartic protease

Metalloprotease

Serine protease

Small-molecule
Informer Set
Isomerase

Ubiquitin-protein ligase

Dehydratase
Lyase

Vesicle coat protein
Membrane traffic protein
Dehydrogenase

G-protein
coupled receptor

https://hbctraining.github.io/DGE_workshop/lessons/functional_analysis_other_methods.html

Zin finger transcription factor | GYCOSyltransferase
Transcription factor

Carbohydrate kinase )

Nucleotide kinase

http://cancerdiscovery.aacrjournals.org/content/5/11/1210



rks: Flgure 5a. Force-directed layout of Les Misérables character co-occurrences.

Networks

forcehtml

html

Heer, J. et al. A Tour Through the Visualization Zoo ACM Queue 53:6 p.59-67 (2010)

s: Figure Sc. Matrix view of Les Misérables character co-occurrences.
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Visualization Tour: Others

Hive Plots Sankey or Flow Diagram
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Resource Description URL
Discovery”
Excel® Everyday tool for generic visualization of smaller data sets http://microsoft.com/excel
Plotly Online tool for fast data visualization hteps://plot.ly/create/
Tableau® For interactive visualizatons, including web based htep://tableau.com
Spotfire® For visual analysis of larger data sets and tool generation https://spotfire.tibco.com/
Origin®4 For visual analysis of larger data sets http://originlab.com
Mathematica® For visual analysis of data sets and mathematical functions http://wolfram.com
MATLAB® For visual analysis of data sets and mathematical functions http://mathworks.com
Matplotlib For tailored visualizations of data sets in Python (115) http://matplotlib.org
ggplot2 For tailored visualizations of large, complex data sets in R (116) http://ggplot2.org
D3js For tailored, interactive web-based visualizations https://d3js.org
Communication
Photoshop® For editing imaging data http://adobe.com/photoshop
GIMP Free, open-source alternative to Photoshop htep://www.gimp.org
[lustrator® For creating and editing vector graphics http://adobe.com/illustrator
Inkscape Free, open-source alternative to Illustrator http://inkscape.org
MolecularMaya Molecular structure plug-in for Autodesk Maya® animation suite http://bit.ly/molmava
BioBlender Molecular structure plug-in for Blender animation suit http://bioblender.org
Utilities

Color Brewer

Web tool for selecting contrasting color maps

http://colorbrewer2.org

Adobe Color

Web tool for designing sets of colors

http://color.adobe.com

Paletton

General Resources

Web tool for designing sets of colors

http://paletton.com

BioVis

Computer science publicadons on biological visualizations

http://biovis.net

Claraf®

Training guides for biomedical visualization tools

htep://clarafi.com

Information is Beautitul

Showcase of charts and infographics for a wide variety of data

http://bit.ly/Info_Beauty

Visual Complexity

Catalog of tailored visualizations for complex data

http://visualcomplexity.com

VIZBI

Collected videos and posters on tailored biological visualizations

http://vizbi.org

Exemplars

PDB101 Outstanding visual explanations of protein function and structure https://pdb101.resb.org
Roche pathway Tailored visualization showing ~3,000 metabolic reactions (72) hetp://bit.ly/RochePathway
WEHLtv Collection of inspiring, informative biomedical animations heep://wehi.tv

O'Donoghue, S.1, et al. Visualization of Biomedical Data. Annual Rev of Biomed Data Sci 1:275-304 (2018)



Visualization:
Software

. APPS PLOTLY
@ CHARTING POLESTAR LYRA
LIBRARIES TABLEAU RAW ILLUSTRATOR
GOOGLE SHEETS EASYCHART NODEBOX
EXCEL HIGHCHARTS CLOUD QUADRIGRAM
ANALYSIS ¢ > PRESENTATION
SEABORN R GGPLOT2 GGVIS VEGA-LITE PROCESSING
MATPLOTLIB BOKEH HIGHCHARTS VEGA D3
C3 NVD3
D4
HIGHCHARTS CLOUD TABLEAU
GOOGLE SHEETS EXCEL RAW POLESTAR NODEBOX
ILLUSTRATOR  QUADRIGRAM EASYCHART  PLOTLY LYRA
NOT FLEXIBLE < > HIGHLY FLEXIBLE
D4 N¥DS H MATPLOTLIB e
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https://source.opennews.org/articles/what-i-learned-recreating-one-chart-using-24-tools/



APPS

CHARTING
LIBRARIES

Visualization:

STATIC

Static vs Interactive Software

WEB - INTERACTIVE

ILLUSTRATOR, NODEEOX,
EXCEL, POLESTAR, RAW

HIGHCHARTS CLOUD, QUADRIGRAM,
EASYCHRT, DATAWRAPPER, TABLEAU,
PLOTLY, GOOGLE SHEETS

GGPLOT2, MATPLOTLIB,
R, SEABORN,
BOKEH, PROCESSING

D3, D4, C3, NVD3, GGVIS,
HIGHCHARTS,
SHINY, VEGA, VEGA-LITE

https://source.opennews.org/articles/what-i-learned-recreating-one-chart-using-24-tools/




Visualization:
Software
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https://source.opennews.org/articles/what-i-learned-recreating-one-chart-using-24-tools/



Additional Reading

* Ten Simple Rules for Better Figures (PLOS)

— Rougier, N.P, et al.

e Fundamentals of Data Viz.

https://serialmentor.com/dataviz/

e Points of View (Nature Methods)

http://blogs.nature.com/methagora/2013/07/data-visualization-points-of-view.html



