ECCB 2016
(eccb2016.org)
• Workshops:
 – Using existing datasets to gain novel scientific insights
 – Computational challenges of 3rd generation DNA sequencing data analysis

• Keynote/Talks/Posters
Dumpster Diving (S. Mangul, UCLA)

• Primarily for RNASeq, can be extended to other seq
• Unmapped reads go to trash
 ➢ On average, ~10-15%
• Read Origin Protocol (ROP) of unmapped reads
• ROP outline
 ➢ QC (excl. low quality, low complexity and rRNA) using FastQC and SeqClean
 Identify:
 ➢ “lost” human reads based on mismatches and short gaps (MegaBlast) and categorize (eg. UTR, CDS, etc.)
 ➢ repeat sequences (RepeatMasker lib, MegaBlast)
 ➢ non-co-linear (NCL) RNAs: circRNAs, gene fusions, trans-splicing (ncSplice, Bowtie2 and CIRI) for distant elements
 ➢ V(D)J recombinations (IgBLAST)
 ➢ Profile microbial/viral reads (MegaBlast, MetaPhlAln)
• Test on RNASeq from 86 individuals (53 asthmatics and 33 control); ~84% mapped with TopHat2
• Run unmapped reads using ROP: 8.4% (low quality/complexity, reads mapping to rRNA), 6.1% ‘lost’ human reads (25% had <=2 edit distance), 0.1% NCL RNAs, 0.01% to B/T CR, 0.3% microbial ➢ 14.9% reads accounted
• Asthmatic individuals had decreased T/B – cell receptor diversity

[link](https://sergheimangul.wordpress.com/rop/)
Recycling gene expression data to better understand what genetic variants affect gene expression
(P.Deelen, UMC Groningen, NL)

- Using public RNASeq data to investigate eQTL and ASE
- ~9000 samples downloaded from ENA (filters: human, RNASeq, transcriptome, readcount >= 500k):
 - Geuvadis samples, cell lines, primary tissues, ...
- STAR; correct for mapping bias using hg19 and mask SNPs with a MAF >= 1% in the Genome of The Netherlands (GoNL, nlgenome.nl); use only unique mapping; variable number of mismatches (> 90 bases: 4 mismatches; 60-90: 3 mismatches; < 60: 2 mismatches); excl small/miRNAs. Keep samples with at least 60% uniquely mapping reads
- HTSeq Count to quantify gene-expression and quantile normalize + log2, use PCA to identify possible outliers (~500 samples) ➔ ~1300 samples
- Batch effect “limited”, PCA showed same tissue from different sources
- Genotyping using GATK, and imputation of genotype likelihoods using Beagle (exl RNA-editing sites, variants near splice junctions and repeat regions)
- Identify cis-eQTLs effect for ~8000 genes; and ASE for ~35 rare pathogenic variants
Workshop: Resources

• EBI
 ➢ Expression Atlas (www.ebi.ac.uk/gxa/home)
 ➢ European Nucleotide Archive (ENA) ~ SRA
 ➢ European Genome-phenome Archive (EGA) ~ dbGaP

• Elexir (bio.tools)
 ➢ Data resources infrastructure for life sciences
 ➢ ~BD2K
 ➢ FAIR data
 • Findable, Accessible, Interoperable, Reusable
What’s in a Squiggle?
S. Reid (ONT)
What’s in a Squiggle?

- Data throughput = pores and speed
- DNA movement ~250 b/s
- Accuracy “adequate” (initial error rates ~35%; now ~5-10%)
- No upper limit on read length
 - 250k bases (internal record)
 - ~10-50kb routine, many users have reported ~100kb
- raw vs event, use events to infer bases
- HMM basecalling (Metrichor) previously led to errors, moved to neural network to improve basecalling
 - Properties of Squiggle: noise is meaningful to improve base calling
- Workflow: Signal => Read detect (raw Squiggle) => Event detect (event squiggle) => Segments => basecall (template strand) => 2D basecall (higher accuracy)
- Hairpin adapter ligated on opposite strand => template and complement strands to be sequenced consecutively => align the sequence to produce a high quality ‘consensus’ => 2D (two directional) sequence
- Improved error rate: 1D ~10-15%; 2D ~5-10%
- Not just DNA: testing on modified bases and RNA

Poretools (poretools.readthedocs.org)
SMRT Seq
D. Stucki (PacBio)

• Long read lengths (~10kb, ~50kb reported) and lower error rate
• Error rate is not dependent on read length
• Sequence single molecule in a “nanohole” - a zero-mode waveguide (ZMW) to reduce background signal
• Each SMRT cell contains thousands of ZMWs
• Light is passed through each “chamber”, each nucl. Is labeled with a different fluorophore used to detect
• Current: SEQUEL system (contains 1M ZMWs, 7x before, improved time and cost)
• Application: Falcon (github.com/PacificBiosciences/FALCON)
 – de novo assembly of (large) genomes (ha/di-ploid)
 – SV
 – transcriptome
3rd Generation Seq

- W.Kloosterman (UMC Utrecht)
 - Detect SVs (>50b)
 - Manta for calling (using Illumina) => 6.6k
 - Sniffles and in-house (using ONT) => ~9k
 - ~3.4k common
 - Validation
 - Other tools: Lumpy, Parliament
 - Testing Blue Pippin (for enriching long reads)

- M.Loose (U Nottingham)
 - Use MinION to “select” specific region based on Squiggle pattern
 - Individual molecules can be rejected on demand by reversing voltage across specific channel
 - Recent use with Ebola outbreak
 - RT basecalling coming soon!
Epigenetic memory at single cell resolution
A.Tanay (Weizmann Inst)

• Embryogenesis
• Single-cell: RNA-Seq, RRBS-Seq, Hi-C Seq
• ESC add/remove vs somatic cells simply transmit epigenetic marks
• Somatic cells susceptible epimutations (gain/loss of methyl mark) which can add “noise”
Genome Wide Prediction of miRNA regulation of TFs (M.Ruffalo, CMU)

• Not much known about TFs regulate miRNAs
• Limited data to train
• Manually curated 266 ‘positive’ labels
• Semi-supervised ML algorithm
 – Conservation, accessibility, motifs

http://cs.cmu.edu/mruffalo/tf-mirna/
Visualization of Large Macromolecular Structure (R.Varekova, CEITEC)

- PyMol, RasMol, tends to be ‘heavy’
- LiteMol easy to use HTML5 compatible
- Easily access data from PDBe
- Access cryo-EM data

http://webchemdev.ncbr.muni.cz/LiteMol/
XGSA: Cross-species gene set analysis (D.Djordjevic, UNSW Australia)

- Comparing gene sets across different organisms
- Simple 1-1 ortholog leads to FP, bias created by 1-to-many or no relationships
- XGSA takes into consideration all relationships
- Directly uses Ensembl/BioMart data

https://github.com/VCCRI/XGSA
TopAnat
(F.Bastian, SIB)

- Discover which organs (ie. anatomy) genes from a set are preferentially expressed
- Enrichment analysis based on anatomical ontology (Uberon ontology)
- Bgee: normal expression from multiple species

http://bgee.org/
http://bgee.org/?page=top_anat
Using SC transcriptomics to understand cellular heterogeneity

J. Marioni (EMBL-EBI, UK)

• < 50 pg can lead to lower correlation between reps and other technical issues
• Model technical noise using spike-ins
• Use BASiCS (cell-specific normalization, tech variability is quantified based on spike-in genes, total variability is decomposed into tech/bio components)
• scRNA study:
 – spatial study of brain development in *P. dumerilii* ➔ ‘binarized’ *in situ* data
 • 83% of cells mapped back to < 150 voxels (very specific mapping!)
 – Cell types E6.5 to E8.5
 • Hierarchical clustering with dynamic tree cut revealed 10 robust clusters

https://github.com/catavallejos/BASiCS
CRAN: dynamicTreeCut
Tumor Genomes
N.Lopez-Bigas (U Pompeu Fabra, Spain)

• Understanding mutation process ➔ finding drivers; precision med
• Mutational rate correlates with chromatin features (eg. correlation with accessibility)
• More mutation found in TFBS (melanomas) compared to flanking region (TCGA data)
• Nucleotide Excision Repair (NER) at TFBS, use excision-repair or XR-Seq ➔ high mutation rate in TFBS caused by impaired accessibility
• Finding drivers: signals of positive selection ➔ drivers?
 Implemented in
 – OncodriverFM: identify bias towards accumulation of variants with high functional impact
 – OncodriveCLUST: mutations accumulating in specific region
• In silico drug prescription – therapeutically actionable genomic alterations: Cancer Genome Interpreter (CGI)

bg.upf.edu/oncodrive-fm bg.upf.edu/oncodrive-cis cancergenomeinterpreter.org intogen.org (459 cancer driver genes)
Mutually Exclusive Mutations in Cancer

(M. Reyna, Brown U)

- Hyper mutations cannot be used with Fisher’s Exact test
- weighted exclusivity test (WExT): conditions on number of mutation/gene and per gene, per sample probabilities

https://github.com/raphael-group/wext/
Genomic HyperBrowser (U of Oslo, Norway)

• Built on Galaxy to integrate datasets
 – Basic mode (pre-defined questions) vs Advanced
 – Dataset collections: eg. spatial interaction and co-localization (Hi-C and ChIA-PET)
 – Workflows

https://hyperbrowser.uio.no/gsuite
Chipster
(E.Korpelainen, CSC Finland)

• GUI for analyzing NGS and microarray data

http://chipster.csc.fi/
PeakXus
T.Hartonen
(U of Helsinki, Finland)

• ChIP-exo or ChIP-nexus, use UMIs
• Better for allele-specific binding analysis, and SNP effect (esp in non-coding region)
• Calls peak based on UMIs
• IgG or input not possible to protocol; compare reads in peak vs outside peak

https://github.com/hartonen/PeakXus
Population Assisted Genome Inference
B. Paten (UC Santa Cruz)

• Reference genome based on a single genome – not population!
• Each individual differs by ~4M SNVs
• Problems with ref: some genes are missing (eg. HLA); gives rise to ref allele bias
• Ref genome an impediment to personal genomics
• Goal: create a human ref to include known variation
• Existing variant annotation fragmented in many db
• Represent ref genome as a graph (genome graph) and not ‘phased chromosomes’
Human Genome Variation Map (HGVM) Pilot Project

• Create a reference that contains all known variants

• Genome Graph

http://news.ucsc.edu/2015/01/genome-variation.html
Genome Variation Graph

• Each base is assigned a unique identifier
 – Shifting assemblies are easier
• Each node represents a sequence
• Edges connect nodes on either side
• Paths: genomes, alignments, annotation (e.g. transcripts)
• Testing using 1000 Genomes and Illumina Platinum Genomes
 – ~3% increase unique mapping

https://github.com/vgteam/vg
http://www.illumina.com/platinumgenomes/
Coined the term “bioinformatics”: the study of informatic processes in biotic systems (1970)
Evolution:
Long Term Information Integration

• Living systems are information processing systems
• Two pillars of bioinformatics: i) there’s revolution in thought from (new) data, and ii) simple interactions can form complexity (counter-intuitive!)
• Evolutionary “gap” between mutations and phenotype
• Few mutations are sufficient to gain fitness in a population
• Gene loss a major evolutionary process (eg. Metazoa loss of homeobox genes) ⇒ most often losses than gains
 – U-shaped mutational landscape: genome expansion/inflation followed by gene loss in later evolving, more complex, species
Automated Filtering of MSA Worsens Phylogenetic Inference

C. Dessimoz (U College London, UK)

• Automated methods: Gblocks, TrimA1,... (4 methods)
• Rebuild tree for orthologs ⇒ species tree discordance test
• Test in DNA/Protein in various families of fungi, bacteria, eukaryotes ⇒ similar results of poor agreement
• Automated filtering results in loss of resolution
• Reported this to Ensembl (verified)
• Modest amount of filtering will have little affect
Posters

- circRNA characterization from RNASeq: github.com/dieterich-lab/FUCHS
- Nucleosome dynamics for visualization and comparison of MNase-Seq: mmb.irbbarcelona.org/NucleosomeDynamics/index.php
- ISB Cancer Genomics Cloud (CGC): isb-cgc.org
- DNA barcodes adapted to the Illumina platform, corrects for substitutions and phaseshifts (del of 1st base, or ins before 1st base) (BioC DNABarcodes): bioconductor.org/packages/release/bioc/html/DNABarcodes.html
- Disease enrichment analysis for gene sets based on literature: cbdm-01.zdv.uni-mainz.de/~jfontain/cms/?page_id=605
Posters

• Correcting bias in epigenome- and transcriptome-wide association studies (EWAS/TWAS)
 bioconductor.org/packages/release/bioc/html/bacon.html

• Ribosome profiling to discover small ORFs (sORFs)
 sorfs.org

• Resources for alignment and analysis of ribo-seq data
 riboseq.org/